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ABSTRACT

In this thesis, we consider the problem of estimating the shape and scale parameters of
Weibull model and predicting the missing and future data based on progressive type 1l
censored and record samples which are coming from the Weibull model. Maximum
likelihood and Bayesian approaches are used to estimate the scale and shape parameters.
One-sample and two-sample prediction problems are also considered . The Gibbs sampler
method is used to draw Markov Chain Monte Carlo (MCMC) samples and it has been used
to compute the Bayes estimates and also to compute the point predictors of the missing and
future data. Monte carlo simulations are performed to study the behavior of the proposed
methods, and two real examples are presented for illustrative purposes.
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CHAPTER 1

Introduction

1.1 The Weibull Model

One of the most famous distributions is the Weibull distribution since it is an impor-
tant distribution in analyzing skewed data and it’s an appropriate model in reliability
and life-testing problems such as time to failure or life length of a component or a
product. The Weibull distribution was proposed by Waloddi Weibull in 1937 for
estimating machinery lifetime, see for example Weibull(1961). Extensive work has
been done since then. A detailed discussion of the Weibull distribution has been
provided by Johnson et al. (1995).

The two-parameter Weibull probability density function (PDF) is given by

a—1_—A\z%

alr® e if v >0,
flala,A) = (1.1)
0 if x <0.

Here a > 0 and A > 0 are the shape and scale parameters. The Weibull distribution
with the shape and scale parameters a and A is denoted by WE(a,\).
The cumulative distribution function (CDF') of the Weibull distribution is given by

Flzlo,\)=1—e >0, a,\ > 0. (1.2)
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1.2 Maximum Likelihood Estimator (MLE)

Let Y1, Y5, ..., Y, be a random sample from f(y|f). The maximum likelihood estima-

tor of 6 is the value § which maximizes the likelihood function

n

L(datal®) = f(y1, Y2, - yal®) = [ ] F(0l6).

i=1

where f is the PDF of the underlying distribution.

1.3 Bayesian Approach

One of the most popular technique in analyzing a wide variety of models is the
Bayesian approach. In a Bayesian approach, 6 is considered to be random variable
with a distribution (called prior distribution). Bayesian inference is based on the

observed data y = {y1, ..., y,} and the prior distribution of 6.

1.3.1 Bayesian Estimation

Suppose we are interested in estimating 6 from the data y = {yi,...,y,} by using
a statistical model described by a density f(y|@). The following steps describe the

essential elements of Bayesian estimation :
1. A probability distribution for € is formulated as 7(6), which is the prior distri-
bution, or just the prior.

2. Given the observed data y, we choose a statistical model f(y|6) to describe the

~

distribution of y given 6.

3. We update our belief about 6 using the prior distribution to conclude the posterior

distribution 7(€|y). This step is carried out as follows

Fly:0)  fyl0)m(0) F(y|0)m(6)

" T T T i@

~ ~

The Bayes estimation depends on the prior distribution(s) of the parameter(s) of a
statistical model and the loss function used. Hence it is necessary to define the prior
distribution and determine the most important of prior’s types as well as the most

important forms of the loss function that is used in the Bayesian estimation.
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[1] Prior Distributions and their Assumptions

There are two kinds of prior distributions, namely the non-informative prior and
informative prior distributions.

Non-informative prior distributions are associated with situations where the prior
distributions have no population basis. They are used when we have little prior
information, and hence the prior distributions play a minimal role in the posterior
distribution. The informative prior distribution has its own parameters, which are
called hyperparameters. The conjugate distribution is commonly used in the gen-
eral Bayesian approach as informative prior. The prior distribution is said to be a
conjugate prior for a family of distributions if the prior and posterior distributions
are from the same family.

In order to perform a Bayesian estimation of the parameters o and A of Weibull
distribution, the prior distribution of o and A must be specified either when the
shape parameter a known or unknown.

When the shape parameter « is known, the prior on A is the conjugate gamma prior.

The prior distribution Gamma(a,b) of the scale parameter A is given by

Fa A e i A >0,
m(Aa,b) = ‘ (1.3)
0 if A <0.

Here the hyperparameters a > 0 and b > 0, I'(a) is the gamma function which is
defined by

['(a) = /OOO " e " dx. (1.4)

On the other hand, when both parameters a and A are unknown, it is assumed that
A has the same gamma prior as (1.3). For more details, see for example Berger and
Sun (1993) or Kundu (2008). It is well known that the prior on «, ms(.), has no
specific form. It is assumed that m5(.) here such that the support of m(a) is (0, 00)
and its PDF is log-concave. Note that many density functions are log-concave, for
example normal density. When the shape parameter is greater than one, the gamma
or Weibull also have log-concave density functions.

To simplify the computations of the Bayes estimators and their corresponding cred-
ible intervals, in chapter 5, we need to assume specific form of m,(.), and will depend

on some hyperparameters.
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[2] Loss Functions

In statistics, a loss function represents the loss associated with an error in esti-
mation. Different loss functions are considered for estimating some parameter 6

using Bayesian approach. The first is the square error loss function and is given by
Li1(0,0) = (0 — 6)*.

The most common loss function is L; which has been considered in the Bayesian
estimation and prediction. Under the loss function L, the Bayes estimator is the

posterior mean, 7.e.
531 = Mean of the posterior distribution = Eposterm(ﬂ}:).
The absolute loss function is defined by
Ly(6,0) =10 — 9.

Our second loss function L, is the symmetric loss function. In this case the Bayes

estimator can be obtained as the posterior median, i.e.
0 2 = Median of the posterior distribution = Med,psterior (0]Y).

Both the square error loss function and the absolute error loss function are sym-
metric. Varian(1975) proposed asymmetric flexible linear-exponential (LINEX) loss

function as follows

L3(0,0) = (g)a —a*In <g) —1,a" #0.

In this case the Bayes estimator of 6 will be

§B3 = [Eposteriar(e_a*
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1.3.2 Credible Interval

The interval (Cp, Cy) is said to be a (1 — 3)100% credible interval for 6 if

Cuy
P(Cy < 6 < Cy|data) — / r(Oldata)dd = 1— 3, 0 < B < 1.
Cr
Notice that, the credible interval for some parameter  depends on the posterior

distribution.

1.3.3 Bayesian Prediction

In this section, we are mainly interested in the posterior prediction density of unob-

served data based on observed ones. Let y be the observed data, 6 be the parameter

~

and y©"? be the unobserved value. The posterior predictive distribution of y"¢¢ i

S

given by
167 = [ 5 0)(oly) o, (15)
where 7(0|y) is the posterior distribution of 6 given data.

For different applications of the prediction problems, one may refer to Kaminsky and
Rhodin (1985), Al-Hussaini (1999), and Madi and Raqab (2004). There are mainly
two important prediction problems known as (i) one-sample prediction problem, (ii)

two-sample prediction problem.

(i) One-sample prediction problem :

Let T} < ... < T, be the observed order statistics known as the informative sample
and 1,41 < ... < T, be the unobserved future order statistics from the same sample,
which is yet to be observed. A one-sample prediction problem involves the predic-

tion of the future order statistics T, 4x); for 1 <k <n —r.

(ii) Two-sample prediction problem :

In this case, let Ty < ... < T, be the same as in (i) and Y; < ... <Y}, be the future or-
der statistics from another independent sample of size m of the same population. A
two-sample prediction problem involves the prediction of the future order statistics
Y for 1 <k <m.
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1.4 Gibbs Sampling Method and MCMC Method

The Markov Chain Monte Carlo (MCMC) method is a general simulation method for
sampling from posterior distributions and computing posterior quantities of interest.
Computing posterior quantities, for example the posterior mean, could be obtained
via integration. But, often times the integration does not have a closed form in
most cases. We use Monte Carlo integration to approximate the integration with
no closed form by using the Markov chain samples. In simulation we approximate

the integration by

N

1
Jowendara)ao = 5 o8
where g(.) is a function of interest, p(f|data) is the posterior distribution of 6 and
0" are MCMC samples from p(f) on its support S and N is the number of desired
samples. Let 6 = (04, ...,0,) be the parameter vector of a certain statistical model,
the posterior distribution of given the data is denoted by 7(0|data).
The Gibbs sampler is a Markt)v chain algorithm to draw samplgs from the posterior

distribution 7(0|data) which works as follows :

e Step 1

Randomly choose an arbitrary initial value of § = (64, ..., 6,) as §©) = (9%0), 950)...., 0

Set t = 1.

e Step 2

Generate each component of ¢ as follows :

~

- draw 9@ from 7T(91|€§t71), Hétfl), 08 data),
- draw Qét) from 7T(92|8§t), 9§t_1), 08 data),

- draw 63 from 7(65/6\”,6. 68D 68V data),

- draw 6" from W(Gr\ﬁgt), 65", Gét), o 98‘;)71), data).

e Step 3
Set t=t+1. If t < N, return to step 2. Otherwise stop.

).
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1.5 Type II Censored Data

A sample of size n is said to be type II censored when only its m smallest lifetimes
are observed ( 1 < m < n ). Experiments involving type II censoring are often used
in lifetime testing. For example, a total of n items is placed on test, but instead
of continuing until all n items have failed, the test is terminated at the time the
m'™ item fails. The number of observations m is usually decided before the data are
collected. Such tests can save time and money, since it could take a very long time
for all the items to fail in some instances.

The resulting data consist of the m smallest lifetimes t; < t5 < ... < t,,, out of a
random sample of n iid lifetimes presumed to have a continuous distribution with
PDF f(t;6) and CDF F(t;0).

The likelihood function of this sample is given by

m

Tl Pl

L(g|data) = - 1L

where 6 is the parameters vector of the density f(¢;0).

1.6 Progressive Type II Censored Data

A generalization of type II censoring is the progressive type II censoring. It can be
described as follows :

Suppose that n units are placed in a life-testing experiment and only m(< n) are
observed until failure. The censoring occurs progressively in m stages. These m
stages offer failure times of the m observed units. At the time of the first failure
(the first stage) X1.mm, 11 of the n — 1 surviving units are randomly removed (cen-
sored) from the experiment. Similarly, at the time of the second failure (the second
stage) Xo.mm, T2 of the n — 2 — ry surviving units are randomly removed (censored)
from the experiment.

Finally, at the time of the m!" failure (the m' stage) X,..nm, all the remaining
T'm =n—m—(ry+ry+...47r,_1) surviving units are removed from the experiment.
We will refer to this as progressive type II censoring scheme (ry,79,...,7,,). Notice
that this scheme includes the type II censoring scheme (r; = ry = ... = rpy 1 =

0,7, =n—m).
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Suppose that X0, Xoumn, s Xemen are a progressively type II censored sample
of size m from a sample of size n with progressive censoring (rq,7s, ..., 7). We as-
sume that Xj.,,.n; ¢ = 1,2,...,m are iid with PDF f(.) and CDF F(.), the likelihood
function of this sample is given by [see Balakrishnan and Aggarwala (2000)]

L(f|data) = C’Hf(xi:mm).[l — F(Zimn)]™, —00 < Zrmm < oo < Tipemen, < 00
i=1

(1.6)

where C =n(n—r —1)(n—2—r —ry)..(n—m+1—ry —r9— ... = 7_1) and 0
is the parameters vector of the density f(.). )
Progressive type II censored sampling is an important method of obtaining data in
lifetime studies. For more details on progressively censored samples, see for instance,
Aggarwala (1996) or Balakrishnan and Aggarwala (2000).

When data are obtained by progressively censoring, several inference and prediction
problems for various models have appeared in the literature. An interesting real
application of progressively type II censored data has been carried out by Montanari
and Cacciari (1988) by studying the wear of an insulated cable having a Weibull
lifetime model.

Balakrishnan and Aggarwala (2000) have developed algorithm to simulate general
progressively type II censored samples from the uniform or any other continuous

distributions.

1.7 Record Data

Let X1, X, ... be a sequence of independent and identically random variables with
PDF f(z) and CDF F(z). Let Y, = max{(X1, X, ..., X,,),n > 1}, we say that X;
is an upper record value and denoted by Xy if Y; > Y;_4, j > 1.

The indices at which the upper record values occur are called record times {U(n),n >
0}.

Many properties of the records sequence can be expressed in terms of the cummu-

lative hazard function
H(z) :/ h(t)dt = —In(1 — F(z)), (1.7)

where h(t) is the hazard function.
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The marginal PDF of Xy, [see Arnold et al. (1998), and Ahsanullah (2009)]

is given by

[H ()"

Jal@) = (n—1)!

f(x). (1.8)

The conditional distribution of Xy ;) given Xy ;) = x; [see Arnold et al. (1998), and
Ahsanullah (2009)] is similarly given by

(o) = Bl 77 T8 for— o6 < 4y <.y < oo

Fxu )Xo (¥5]25) = (j—i—1) 1 — F(a;)’

(1.9)

Record values arise naturally in many real life applications involving data relating
to weather, sports, economics and life-tests. For an elaborate treatment on records
and their applications, one may refer to books by Arnold et al. (1998), Nevzorov
(2000) and Gulati and Padgett (2003).

1.8 Problem Statement

In this research work, we study different methods of estimation and prediction in-
volving progressive type II censored data and record data. These methods involve

the classical method (the MLE method) as well as the Bayesian approach.
The organization of this thesis is as follows :

In chapter 2, we review and describe the literature relevant to the topic under

study in this thesis.

In chapter 3, and based on progressive type II censored sample from the Weibull dis-
tribution WE(«, A), the maximum likelihood method is used to estimate the shape
parameter « and scale parameter A. When the shape parameter o is known and
unknown Bayesian approaches are used to estimate o and A, or some function of «
and A, say 0 = g(a, \), under different loss functions described in subsection [1.3.1],
the symmetric credible intervals are also established. When the shape parameter is

unknown, the Bayes estimators of @ and A can’t be obtained in closed forms.
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10

We use Gibbs sampling procedure to draw MCMC samples and has been used
to compute the Bayes estimators and also to construct symmetric credible intervals
for a and A. One-sample and two-sample prediction problems are used to predict

the missing and future data based on observed sample.

In chapter 4, we use record sample from WE(«, A) to estimate the shape and scale

parameters as well as predict of future observations.

Numerical study is demonstrated in chapter 5 based on simulation data.
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CHAPTER 2

Literature Review

In this chapter we describe the literature relevant to the topic under study in this
thesis.

Ragab et al. (2007) obtained the maximum likelihood estimator and Bayes estima-
tors for the parameters of the Pareto model based on the record data. Also, they
considered the problem of prediction for the future record values based on some

observed record values.

Soliman and Al-Aboud (2008) obtained the maximum likelihood estimator and
Bayes estimators for the parameters of the Rayleigh distribution based on the record
data. Also, they considered the problem of prediction for the future record values

based on some observed record values.

Madi and Ragab (2009) studied the Bayesian estimation of the parameters as well
as prediction of the unobserved failure times from the generalized exponential (GE)
distribution, based on progressively censoring sample data. They used the Gibbs

sampler for predicting times to failure of units in multiple stages.

Kundu and Howlader (2010) described the Bayesian inference and prediction of
the inverse Weibull distribution for type II censored data. They obtained the Bayes
estimator of the unknown parameter based on the square error loss function. They
used tha Gibbs sampler to draw MCMC samples for estimating the two unknown

parameters of the inverse Weibull distribution.

Mousa and Al-Sagheer (2005) used the two-sample prediction problem to predict
the kth order statistics in the future progressive sample based on observed progres-
sive sample from Rayleigh distribution.

Kundu and Raqgab (2011) described the Bayesian inference and prediction of the two
parameter Weibull distribution when the data are type II censored. They used the
Gibbs sampling procedure to draw MCMC samples to compute the Bayes estimators
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and construct symmetric credible intervals. Their work is summarized as follows :

Suppose n individual units are put on a test and let us denote the lifetimes of
the n units by 13,75, ...,T,,. It is assumed that T)s are independent and identically
distributed random variables with PDF(1.1), i.e.

ait* e M if ¢t > 0,

0 it t <0.

f(tla, A) =

The integer m < n is pre-fixed and the experiment stops as soon as we observe the
mt" failure. We denote the first m failure points as t; < ty < ... < t,,. The problem
was to estimate and construct credible interval of some function of o and A, say
g(a, A\) =0, or just only of a or \.

They considered the Bayesian estimation in two cases :
Case(1) Shape Parameter (o) Known.

Based on the type II censored sample ¢; < t3 < ... < t,,, and when X\ has the
prior distribution as mentioned in subsection [1.3.1] of chapter 1, Eq.(1.3), the pos-
terior density function of A is well known to be

Gamma(a +m, b+ > t& + (n —m)t2), i.e.
=1

m a+m
(b 3+ (n— m)t%)
i=1 )\a—i-m—l e

“A+ fjl 19 (n—m)t2,)
I'(a+m) '

(N a, data) =

(2.1)

Therefore, the Bayes estimator of A under the loss function L, is the posterior mean

and that is
N a+m

At

b+ > t& + (n—m)ty,
i=1

The Bayes estimator of A under the loss function Ls is the posterior median and

that is

Sy = mTta +O0(m™?),

b+ > t¢+ (n—m)te
=1
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here ¢; = a — 3 + 52—, [see Ren et al. (2006)].

The Bayes estimator of A under the loss function Lj is

5‘3 = mrce +O(m_3)a

b+ > t¢+ (n—m)tg,
i=1

here ¢ = a — % - %, [ see Lemma 5 of Ren et al. (2006) |.
Because, the posterior distribution of A\ follows gamma, a credible interval of \ can
be easily obtained. Moreover, if a+m is a positive integer, then the chi-square table

values can be used for constructing credible intervals.
Case(2) Shape Parameter (o) Unknown.

It is assumed that a and A have the joint prior as described in subsection [1.3.1]
of chapter 1. The posterior distribution of o and A given the data is denoted by
7(a, A|data).

The Bayes estimator of § = g(«, \) under the loss function L, is obtained by

05, = Eposterior (0]data) = / / O (ov, A|data) do d.
0 0

The Bayes estimator of § = g(a, A) under the loss function Ls is given by

A~

932 = Medposterior(e‘data).

The Bayes estimator of § = g(«, \) under the loss function L3 is obtained by

. . _L oo [oo . —ar
b, = (B 07 lata)) = | [ [7 67 st Ny daar] ™
0 0

It is clear that in their work even if m(«v) has a specific form, the Bayes estimators
with respect to different loss functions may not be obtained in explicit forms. So
they used Gibbs sampling technique to draw MCMC samples from the posterior dis-
tribution of @ and A, 7(a, A|data), and hence the Bayes estimators can be obtained.
The Gibbs sampler method, as mentioned in section [4] of chapter 1, needs the con-
ditional distributions 7(A|«, data) and 7(aldata).

The conditional distribution 7(A|«, data) is in Eq.(2.1). Kundu and Ragab (2011)

state the following theorem for this conditional distribution 7 («|data) :
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Theorem

The conditional PDF of a given data is given by
1

m at+m?’
(b + >t 4+ (n— m)t%)
=1

m(aldata) < mo(a) ™ Htf‘*l X
i=1

and it is log-concave.

To obtain the Bayes estimator under the three loss functions, Kundu and Raqab

(2011) proposed the following algorithm of Gibbs sampler to draw MCMC samples

e Step 1 Generate « from 7(«|data) using the general methodology of Devroye

(1984).
e Step 2 For a given «, generate A\ from 7(\|«, data).

e Step 3 Repeat steps 1 and 2 N times and obtain MCMC samples
{(ei, Ni)ii=1,2,..., N} and 0; = g(ai, M)

Based on MCMC samples {(c;, \;);i = 1,2, ..., N}, Kundu and Raqab (2011) ob-
tained the Bayes estimators under the different loss functions and also constructed
credible intervals, by using the method of Monte Carlo described in section [4] of
chapter 1. As for the prediction problem, extensive work can be found in the liter-
ature.

Based on the MCMC samples obtained in step 3 of the previous algorithm, Kundu
and Ragab (2011) have obtained the lower and upper bounds of a (1 — 5)100%,
0 < 8 < 1, and predictive intervals of future observations based on the past sample
when the data are type II censored.

Smith (1997) investigated the asymptotic property of the predictive inference of
Bayes and frequentist procedures for a class of parametric family.

Al-Hussaini (1999) also considered the Bayesian prediction problem for a large class

of lifetime distributions.
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CHAPTER 3

Statistical Inference Based on
Progressively Type II Censored Data
from Weibull Model

3.1 Maximum Likelihood Estimation

In this section, we derive the maximum likelihood estimator of the parameters «
and A\ of the Weibull model, based on the progressive type II censored data.
Suppose that X = (X1, Xownm s -y Xmemen) 1S @ progressively type II censored
sample of size r;n from a sample of size n drawn from a Weibull distribution, with
progressive censoring scheme (r1, ro, ..., 7). Suppose that X ;i = 1,2,...,m
are iid random variables with PDF (1.1) and CDF (1.2) being defined in chapter 1.
Based on Eq.(1.6), the likelihood function of this sample is given by

Lo, N\ X) = CH f(@imenla, N) [1 = F (2|, M) (3.1)
i=1
where C =n(n—ri—1)(n—2—=r —719)...(n—m—+1—1r —1r9g — ... —7Tp_1).

From (1.1), (1.2) and (3.1), we write the likelihood function as follows

m -\ 5 147r;)xs .
L{a, A|X) = Ca™\™ <H xM) ¢TI (3.2)

mmn
=1

The natural logarithm of the likelihood function, Eq.(3.2), is

InL(a,\|[X)=InC+mlna+mn\+ (o — 1) Zlnxi:mm — )\Z(l + 1)L
i=1 i=1

(3.3)
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By differentiating Eq.(3.3), with respect to A and equating the resulting terms to

zero, we obtain the estimating equation

0 m e N
5 InL = X - Z(l + Ti)xi:m:n =0,

which gives

A= . (3.4)

2(1 + r’i>xiofm:n
=1

If we differentiate Eq.(3.3), with respect to a and equating the resulting terms to

zero, we obtain the following estimating equation

m

0 m i
nl=— +i§:1 1 i > (14 r3)ag,,., nx (3.5)

Oa —

By substituting Eq.(3.4) into Eq.(3.5), we obtain

m

m + Z In 2.0 — mn X Z(l + )z N T, = 0. (3.6)
“ =1 (1 + 701’)‘1.?:[171:11 =1
i=1

3

If we use a suitable numerical method, the solution of a non-linear Eq.(3.6) will
be the maximum likelihood estimate of «, and by substituting the value of « into

Eq.(3.4), we obtain the maximum likelihood estimate of A.

3.2 Bayes Estimation and Credible Intervals

In this section, we estimate the unknown scale parameter A and it’s corresponding
credible interval when the shape parameter « is known. When both shape parameter
« and scale parameter A are unknown, we use the Gibbs sampling method to estimate
the two parameters a and A, under different loss functions and with respect to the
prior(s) described in subsection [1.3.1] of chapter 1. Also the credible intervals of a

and A\ are considered.
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3.2.1 Shape Parameter Known

Based on a progressive type II censored data X described in section [3.1], and by
combining the likelihood function, Eq.(3.2), and the prior density of A\, Eq.(1.3), we

obtain the following theorem

Theorem 1

The conditional PDF of A given a and X is Gamma(a +m, b+ > (1 +r;)xd,...)-
~ i=1
That is, the posterior density of A given o and X is of the form

m a+m
(b + Z:Zl(l + Ti>x7j;m:n) atm—1 7/\(b+.§ (1+7’i)$?fmm)
7r1()\|oz,)N() = Tlatm) A e i=1 . (3.7)

Proof
From Eq.(3.2) and Eq.(1.3), we immediately have

7r1()\|04,)N() x L(a,A) m(Ma,b)

m

=AY (A4,
o )\m e i=1 Aa—le—Ab

A+ gl(lJrn)x“ )

iimin

— )\a+m—1 e

It follows that Ao, X ~ Gamma(a+m, b+ > (14 r;)xd,..)-

=1
Under the square error loss function Ly, the Bayes estimator Ap, of A is given by

Sp, = postemr(/\m,X)://\7r()\|a,X)d>\: _axm . 38)
0 b + Z(l + ri)xgm:n

i=1

The Bayes estimator Ap, of A with respect the loss function Ls is the median of the
posterior density function. In this case we do not have explicit expression of the

median. By using Lemma 1 of Ren et al. (2006), the Bayes estimator will be

m—+ ¢

5\32 = Medposterior()‘|a7 X) = m
b + Z(l + ri)xgm:n
i=1

+O(m™?), (3.9)

— g1, _8
where ¢; = a — 3 + 55—
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The Bayes estimator ;\33 of A under the LINEX loss function L3 with a* # 0,
can be seen as

1
a*

N o
)\BS = Eposterior ()\

a,{()]

Now, by using Lemma 5 of Ren et al. (2006), it can be seen that

m + Co

Ap, = —— +0(m™), (3.10)
b+ Z(l + Ti)xgm:n
=1

_ o (a4 (a*-1)
where ¢, = a 5 ST

Since, the posterior distribution of A follows gamma distribution, a credible interval
of A can be obtained as follows :

The (1—3)100% credible interval of A, (Cy, Cy), satisfies the following two conditions

P(CLr<A<o) = 1-— g, (3.11)
P(Cy <A<o0) = g (3.12)
Now from Eq.(3.11), we have
" at+m
7 <b + 1:21(1 + Tz‘)l‘ffm;n) (ot 67)\<b+i§1(1+n)xf‘:m:n> I é
['(a+m) 2

CL
m

By making the transformation u = A(b+ > (1 4 r;)z%,,..,,), we immediately obtain
i=1

a+m—1 ,—u
/ e =12

m
(b+z <1+n>x;%m>CL
=1

which is equivalently to

/ um e dy = (1 - g) I'(a+ m).

m
(b+ 5t (1+m)w;ﬁmm) o
=1

i=

By using the incomplete gamma function, which is defined as

['(a,c) = / " e dx, a >0, c>0, (3.13)

C
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we immediately obtain

r <a +m, (b+ i(l + ri)xffmm)CL> = (1 - g) I'(a+m). (3.14)

=1

Similarly from Eq.(3.12), we obtain

r (a+m, (b+2(1 —l—ri)xffm:nCU) = §F(a+m). (3.15)
i=1

By using a suitable numerical method, we obtain the lower and upper credible
interval C, and Cy by solving the equations (3.14) and (3.15), with respect to Cp,
and Cy, respectively.

In particular, if a is positive integer, then the chi-square table values can be used
for constructing credible interval for A as follows :

Since A has Gamma(a +m, b+ > (1 + r;)x%,,.,), then a pivotal statistic ) =

i=1
2A(b+ > (1 +r)x?,,.,,) has Xg(%m). Hence, the (1 — 3)100% credible interval for A

=1

is given_by
2 2
ngll_ﬁ,2(a+m)) e fég 2(a+m)) |
2(b+zx?mn(]‘+r1)) 2(b+zx?mn(1+r1))

where X%ﬁ r) is the $100th upper percentile of chi-square with r degrees of freedom.
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3.2.2 Shape Parameter Unknown

In this subsection, we describe the procedure to obtain different Bayes estimators
of a and A, or in general of 6 = g(«, A), under different loss functions described in
subsection [1.3.1] of chapter 1, when both parameters a and A are unknown. It is
assumed that o and A have the joint prior described in subsection [1.3.1] of chapter
1, based on the prior distributions 7 (\A|a, b) and 7 (), the posterior distribution of

«a and A is given by

L(a, )\|)N() .m (A, a, b)ma(a)
(o, Al X) =

. (3.16)
L(a, \|X) . m (N, a, b)me(a) dov dA

If we want to compute the Bayes estimator of § = g(«a, A), under the square loss

function Lq, then the corresponding Bayes estimator will be
éBl = Eposterwr 0|X = // 6)77' CY )\|X dO{ dM.
0 0

For the absolute error loss function Ls, the Bayes estimator éBQ will be the median

of the posterior distribution @, i.e.
éBZ = Medposterior(ﬂ{{)-

If we take the LINEX loss function L3, then for any a* # 0, the Bayes estimator 055

of 6 will be
// 0" 7(a, \|X) dad\
0 O

It is clear that even if we have a specific form of my(«), the Bayes estimators 931,

633 = Eposterior(

0 5o and 0 B3, under different loss functions may not be obtained in explicit forms.

Here we develop an algorithm by using the Gibbs sampler method to compute
Bayes estimators above and also to construct credible intervals. The Gibbs sampler
method, as mentioned in section [4] of chapter 1, needs the conditional distributions
7r1()\\04,)N() and 7r2(04|)N(). Note that 7r1()\|04,)~() is obtained in Theorem 1, and for

mo(a] X)), we state the following theorem :
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Theorem 2

The conditional PDF of «a given X is given by

m

1
ra(alX) ox my(a) @™ [ [, x —— 3
(b LS >m)

i=1

and it is log-concave.
Proof
From the posterior distribution of o and A, Eq.(3.16), we have

7T(>\7 OélX) X L(Oé, )‘|X) 7Tl()\|047 a, b)ﬂ-Q(a)

U m
=AY 4z, _ L
x a™A\"e = o Hmf‘mln A re ™ (@)
i=1
" A+ 3 (147)22,,.0)
— -1 = Ti)Tmin
= mo(a) ™ H D A R :

i=1
The PDF of « given data is

[e.9]

m(a|X) = /W()\,oz\)f) d\

o0

ESV(S SYCEES LI
o my(a)a™ [ [ #min / ATTTle = X

r
= my(a)a™ [ [ 2t X = atm)
i=1 b+ D (1 +7)ad,.,) ™
=1
o 1
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Now, consider

Inm(a|X) =C+Inm(a)+ mina+ (a—1) Zlnmi;mm —(a+m)ln
=1

i=1

where C' is constant.

Suppose that

g(@) = b+ (147025,
i=1
then
g(@) = (14728 I T,
i=1
and

g//<a) = Z(l + rl)xzamn(]'n xi:m:n)27

i=1

where ¢/(.) and ¢”(.) denote the first and second derivatives of ¢(.), respectively.
It follows that

Inm(a|X)=C+Inm(a) + mina+ (o — 1) Zlnxi:m:n — (a4 m)Ing(a).

i=1
Now
m

(nmo(@lX)) = (nms(a)) + 2 + 3 I @umn — (a+m) . 5
~ i=1

a)g" ()= (g’ (a))?
(Inm(a]X))" = (Inm(a))” — 2 — (a+m). gla)g (;(L)g( )

Since, mo () is assumed log-concave, as mentioned in subsection [1.3.1] of chapter 1,

we have (Inm(a))” < 0. Observe that ¢”(a) > 0 and so

b+ i(l + Ti)xiofm:n

|
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Z(l + rz)m?mn] [Z(l +r)zd (I T

i=1

m 2
- [Z(l + Ti)xgm;n In xi:m:n]

=1

= bg/l(a) + Z Z(l + TZ)(l + rj)‘rﬁm:n x?zm:n<lnxiimin —In xj:m:n)2

1<i<j<m

>0for b>0.

Therefore (Inm(a]X))” < 0, and thus m(a|X) is log-concave. One can see this
theorem and it’s proof in Kundu (2008).

Now by using Theorems 1 and 2, it is possible to generate MCMC samples from the
posterior distribution of a and A, Eq.(3.16), and then use these samples to obtain
the Bayes estimators of any function of @ and A, § = g(a, ). This enables us to
construct the corresponding credible intervals. It may be mentioned that the Bayes
estimator of # depends on the loss function used, while the corresponding credible
interval does not depend on the loss function. It just depends on the posterior dis-
tribution function.

For this purpose we provide the following algorithm :

Algorithm 1

e Step 1
Generate « from the log-concave density function m(a|X), Eq.(3.17), using
the method proposed by Devroye(1984)[see Apendix[1]].

e Step 2
For each «, generate A\ from the posterior density function of A given o and
data, m (Ao, X), Eq.(3.7).

e Step 3
Repeat steps 1 and 2 M times and obtain MCMC samples {(a;, \;); @ =
1,2, ..., M}.
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e Step 4
Obtain the Bayes estimate of § = g(«a, A) with respect to the square error loss

function L; as

R 1 X
931 = M Zg<ai7)‘i>'
=1

Obtain the posterior variance of § = g(«, \) as
LM
. B PR
Var(f|data) = — ;1 (0; — 0p,)".

In particular, if 0 = g(a, A) = a (or A), then

1

ap, = M Qi

M
~ 1
Var(a|data) = i Z(ai — ap,)%

or

. 1 M
)\B1 = MZ)\“
1 & A
Var(Adata) = MZ(/\i—)\Bl)Q.

Step 5

To obtain the Bayes estimate of 8 = g(«, \), under the absolute error loss
function Lo, we order 61, 6s,...,00 as 0y < 0(2) < ... < ), then the Bayes
estimate of 6 = g(a, \) will be

éBQ = Median [(9(1), @(2), ceey G(M)] .

Obtain the posterior variance of § = g(«, \) as

M
Var(0|data) — % S (6 — b,

i=1
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In particular, if 0 = g(a,A\) = a(or ), we order ai,ay,...,apn as «aq) <
a2y < ... < apn and A, Ag, ., Ay as Ay < Ag) < ... < A, then the Bayes

estimate of « (or A) will be
ap, = Median [a(l), Q) s oz(M)} ,
. 1 A
Var(aldata) = i Z(ai — ép,)%
or

)\ = Median [)\ s Q)5 s A }

Var(\data) = — Ag,)?

”ME

Step 6
Obtain the Bayes estimate of § = g(a, A\) with respect to the LINEX loss
function Lz with a* # 0 as

a*

A M
9B3:[ Z 7 (@ ]

Obtain the posterior variance of § = g(«, \) as

e 1| 7
o, = [MZW] ,
M
Var(aldata) = Z(%—@BS)Z-

or
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4
Sn, = [%Zj] ,

=1

~ 1 ~ 9
Var(\data) = M;(Ai — Ap,)?
e Step 7
To compute the credible interval of § = g(a, \), we order 6;,0s,...,0y as
01y < 02y < ... < by Then the (1 — 3)100% symmetric credible interval of

0 is given by
(9([“2—51) : 9([M(1—§>1)> )
where [x] denotes the largest integer less than or equal x.
In particular, if 0 = g(o, \) = «, we order oy, g, ..., a8 ) < ) < ... <

a(yy and then the (1 — 3)100% symmetric credible interval of « is given by

(“([”ﬁ—"]) ) “([M(l—gm) 7

and in the same way, the (1 —(3)100% symmetric credible interval of X is given
by

(A([”g—ﬁn : A<[M<1—§)1>) :
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3.3 Bayes Prediction

In this section, under different loss functions described in subsection [1.3.1] of chap-
ter 1 and based on observed progressive type Il censored data, we will derive the
posterior predictive density, which is necessary to obtain the Bayes predictors, of
missing and future progressive type II censored data when one-sample and two-
sample prediction problems are used. As well as we will find the predictive survival
function, which is necessary to obtain bounds, of missing and future progressive
type II censored data, when both one-sample and two-sample prediction problems

are used.

3.3.1 One-Sample Prediction

Let = (Z1mm , Tomm s -« - 5 Tmemn) De the observed progressive type II censored
samgle of size m from a sample of size n, drawn from a Weibull distribution, with
progressive censoring scheme (r1, ,73, ..., ), where m is the number of censoring
stages. Based on the observed progressive type II censored sample x, our aim is to
obtain the Bayes predictive estimator, under different loss functionsr:v Ly, Ly and L3
with a* # 0 , as well as constructing the predictive interval of the jth order statistic,
Y =Y, (k=1,2,...,7;;j = 1,2,...,m), from a sample of size r; removed items

at stage j. This is the one-sample prediction technique.

To obtain the Bayes predictive estimator, we need to define the posterior predictive
density of Y = Y}, given the observed progressive censored sample x. Based on

Eq.(1.5), the posterior predictive density of Y = Y}, can be written as

oo

my(olo) = [ [ Frevla) ma Nz dadd, y> 2y,
0 0

where fy|,(y|a, A) is the conditional density function of ¥ = Yj.,, given o, A and
the data 9;

Using theNMarkovian property of progressively type Il censored order statistics, see
Balakrishnan and Aggarwala (2000), the conditional PDF of Y = Yj.,, given x is
just the conditional PDF of Y = Vi, given j..p, i.€. h

fY\f(y|av )‘) = fY\xj;m;n(y|a7 >‘)
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Using the Markovian property and the fact that the conditional density of ¥ =
Yi.r; is the same as the density of the kth order statistic from a sample of size r;
: : ()
with den81ty m
a, A and the data x becomes

; Y > Tj.mm, then the conditional density of Y = Y}, given

fY\g(y|a> /\) = fY|xj;m;n (y|a7 /\)
= C'[F(yloy \) = F(2jmem|o, V)" 1 = F(yla, \)])7 "
f(yla, \)

X =y > jiminy
[ = Flagmmlas N7 7

7l
where C = m

Based on the PDF (1.1) and CDF (1.2), we have

o atk— e Ay le W
Friz(la, A) = C [e7 X mn — =2 [F71 oAkt Y€

a
Jjimin

e—Arja:

By using the binomial expansion, we have

- 1
=0

k-1
k: - 1 . _ ixa _ 71'7 e — r.— (e}
ng@V%A):*j[§:<:. )(—1f1%zAjmmeAw Uy]e Alrj—k)y

(o3

X a)\ya_l e_)‘yae)‘rjmj:m:n
(k-1
= CO()\Z |:( _ )(_1)ki1€—)\(i—rj)z§“:m:n % yozfl e)\(rji)ya:| .
1
=0

(3.18)
The posterior predictive density of Y = Yi.r, at any point y > 2., is then

f)lj\g(y|av )‘) = Eposterior [fY|xj;m;n (y|a7 A)]

00 00 h1 P
= A o _ 1)kt “AG=T) T o, s 21 —A(rj—i)y®
//[a;<i><) c yooe
0 0 =

x 7(a, A|z) dad. (3.19)
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Under the square error loss function L, the Bayes predictive estimator of ¥ =

Y}.r, can be obtained as

Yo = Ep(Y]z)

oo

= / Yyl (Wlen A) dy

Tjm:n

o T k-1
frnd O/ // [ A ( ) k 1—1 *)\(’L r])xj:m:n X ya 6—)\(Tj_i)ya
xjim:n 0 —0

0 2

(o, Az) dad\ dy.

Based on MCMC samples {(ay, A); | = 1,2,..., M} obtained by using the Gibbs

sampling method, the simulation estimate Vkﬁf Lof Y = Y., will be

k—1
vE = / [M ZO‘WZ (k : 1)( 1)F e MO g e Al(rj_i)yal] dy
Tjm:n
M k-1 o
:%Zal)‘l (k_l)( 1)k i—1 =N ( r])]mnx / y*e l(TJ_Z)?Jld

7

=1 1=0

Tjm:m

By making the transformation u = X\;(r; — i)y and converting the integrand to the

PDF of gamma distribution, and by using Eq.(3.13), the simulation estimate YBP !

of Y = Y., becomes

BPl

% — (X241, '
D>k (’f B 1) (— 1)l Mo TR l)f’“"mn)
al()\l(rj — Z'))OTLJrl

ik—l <k—1)< R . F( +1, Az(m—z)x]mn>

ar L1
A (ry — i)

(3.20)
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In particular, the simulation estimate of the first unobserved value in any cen-

soring stage j, Y1.,;, can be obtained by setting k = 1 in Eq.(3.20) as follows

M F<i+1 Ar-x?l.>
VBPL _ C NI o » ATV jmen
e M . i 1 ‘

S ANNEY |
A T

Under the absolute error loss function Ls, the corresponding Bayes predictive es-
timator of Y = Yi,, (k = 1,2,...,r;;j = 1,2,...,m), denoted by Ykﬁ? is the

median of the posterior predictive density of Y = Y}, Eq.(3.19), which is obtained

by solving the following equation with respect to Y22

YBPZ

/ F¥ie (Wl A) d (3.21)

Tj:m:n

Equation (3.21) is equivalent to

[ it (322

YBP2

Based on the posterior predictive density of Y = Y}.,., Eq.(3.19), Eq.(3.22) is equiv-

alent to
k—1 _1
/ / / [‘”Z( )<—1>’H'—leW’“f”?:mmxya—le—wj—i)y“ (e, Az) dad) | dy
yBPQ =0

N —

As before, based on MCMC samples {(ay, \;); | = 1,2,..., M}, the simulation es-
timate ffkﬁf > of Y = Y}, can be obtained by solving, with respect to Yﬁf 2 the

following equation

[e.9]

k-1 e e .
o J (B3 (5 e s o) gy

YBP2
"j
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or
M k—1 S)

C kE—1 . L . 1
=1 =0 ?kBP2

j

By making the transformation u = A\(r; — )y, we have

C M k—1 E—1 ) . o 1
v )\ _1 k—i—1 *)\l(zf,rj)xj:m:n —_— / v d
i E A - ( i )( ) e X ozl)\l(rj — 1) e U

N(ry—i)(FEF2)en

_ _ _\(VvBP2 a;
C M k-1 k‘ _1 ' ‘ o >\l(7"3 Z)(Yk;rj ) 1
< 3 < . )(_1)k—z—1€—>\l(l—7’j)xj;lm;n « =5 (323

T‘j—l

In particular, the simulation estimate of Y7.,, can be obtained by setting £ = 1 in

Eq.(3.23) and solving, with respect to )71]3;5 2 the following equation

B YBPZ a;
e ZTJ( 1.7]- )

M
C Z Y 1
R eAlTij:m:n X — = —
M T 2
=1

Under the LINEX loss function L3 with a* # 0, the corresponding Bayes predictive

estimator Y,ﬁf 3 of Y., can be obtained as follows

1
(l*

VA — | B (v J0)|

_ 1
o9 a*

| v iglandy

— (k-1 , , a . .
A —1 k—i—1_—A(i—7;)z%, . w e 1 —A(rj—1)y®
/ / a E ( . )( ) e g y €
0

1

X (o, N|x) dadA dy
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As before, based on MCMC samples {(ay, \;); | = 1,2,..., M}, the simulation

estimate Yﬁf P of Y = Yy, will be

0 1 M k—1
~ _ !
YkBTI;S — |C / M E Oél)\l E ( ) k i— 16 A (i— Tj)xjmn
=1 =0
Tjm:n

x yal—a*—l 6—)\l(rj—i)y°‘l dy

oM o
—_ by 1 k—i—1 —)\l(z r]):c in
lelo‘”zio( i >( ) :

1

— %
) @

Tj:m:n

By making the transformation u = X\;(r; — i)y and converting the integrand to the

PDF of gamma distribution, and by using Eq.(3.13), the simulation estimate }A/k]if 3

of Y = Y., becomes

[ M k-1 L(1—% Ny —i)ast ) B
O k—1 ; ( a0 M\ min
YkBrI;S i § :CVI)\I ( i )(_Ukzle—)\ 1(i— T])mjmn % 1 iﬂ

1
M k] F(l——,)\r-—ixofl.> “
E <k > k i—1 _)‘Z(Z T])xjmn X Qg l( J ) Jmn '

=1 =0

~

(3.24)

In particular, the simulation estimate )A/lﬁf?’ of Y =Y, , can be obtained by setting
k =1 in Eq.(3.24) as follows

1

Y
VBP3 _ A . <1 Ay m")
AR LL’
Yio, Ze himn _ﬁ s
ap ag
Aty
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To obtain prediction bounds on Y = Yy, (b =1,2,...,7r;; j = 1,2,...,m), we
need to find the predictive survival function of Y = Y}, at any point y > Zj..n.
Based on Eq.(3.18), the survival function of Y = Yj., is defined by

Syeylan ) = / fria(zla, A d

—[(k—1 iy A=) 0] = A(ry—1)2°
= C’a)\z . (—1) D Tgamin Z@~ % @7 M dz

Yy =0
k—1 ]{7 1 o]
= Cal - 1 k—i—1 —)\(z r;)Ts mn/ a—1 7,\(rj7i)zﬂd
@ Z ( Z >( ) Ji z e z
=0 ’
By making the transformation v = \;(r; — )2, the survival function becomes
1 o0
Sy |z \) = Ca)l 1)E=i=1 o= A=) i / —uy
vl ) = o Z ( ) ) T A ) -
A(rj—1)ye

—A(rj—1)y®
_ k—i—1 7)\(1 r])m] o €
- (JE:K ) 1) o } (3.25)

Under different loss functions: Ly, Ly and L3 with a* # 0, the predictive survival

function of Y = Y}, can be obtained, respectively, as follows :

S{;‘E(y‘&,)\) = Eposterior (SY|£(?J|C¥, )\))

00 00 L g
k—1 *)‘(ijl)y

= //CZ |:( Z )( 1>k i—1 —/\(l Tj)x]mn ﬁ (Oé )\‘l’) dOéd)\

0 0

=0

55‘£(y|047 )‘) = Medposterior |:SY|£(y|Oé, )\):|

1

P

S{;‘E(yla,/\) = {Eposterior(sﬂf(ma,)\)) }

TE L ke VO A
[// (C [( ) L OB . eT_ZD w(a,)\|:£)dad>\]
00 =0 !

1
aF

(3.26)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



34

It is clear that the equations in (3.26) can’t be expressed in a closed form and
hence it can’t be evaluated analytically. By using the MCMC samples {(ay, \;); | =
1,2,..., M} obtained by the Gibbs sampling procedure, the simulation estimator for

the predictive survival function of Y = Y%.., under Ly, is given by

M k-1 -,
5 ¢ E k=1 i1 N (i) e~ Au(ri =)y
S{f|£(ly) = M Z ( Z ) (—1>k 16 >\l( J):Dj:m:n X ?
1=1 i=0

Under the absolute error loss function Ls, the simulation estimator for the predic-

tive survival function of Y = ¥}.,, can be obtained by using the following algorithm :

Algorithm 2

e Step 1
Evaluate S = Sy, (y|o, A), Eq.(3.25), at each sample (a;, \;) for I = 1,2,..., M,
to get Sl s SQ g ey SM

e Step 2
Order Sl, SQ, ey Sy as S(l) < S(Q) < ... < S(M)

e Step 3

The simulation estimator for the predictive survival function of V' = Y}, is

given by

S’gg(y) = Median [5(1) , Sy, S(M)] )

Under the LINEX loss function Lz with a* # 0, the simulation estimator for the

predictive survival function of Y = Y}.,., can be obtained as

1

* - %

M k—1 N —a @
A C k-1 e e
S{/D‘x(y) _ | = 2 : <§ : |:< Z ><_1)k 16 M (=15)T5 0 ﬁ‘| .
” =1 j

1=0
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Another important aspect of prediction is to construct a two-sided interval for
Y =Y, (k=1,2,...,75;5=1,2,...,m).
A (1—3)% predictive interval (PI) of Y = Y., , under different loss functions L;, Lo
and Lj, can be found by solving the non-linear equations (3.27) and (3.28) for the
lower bound L and upper bound U :

g

PY > Llz)=1-5 & SYL(L)=1-5% (3.27)

P(Y > Ulz) = g & S.U)=2. (3.28)

We need to apply a suitable numerical method to solve these non-linear equations

as they can’t be solved analytically.

3.3.2 Two-Sample Prediction

Suppose that X = (X1.n,my 5 Xowmgng s -« » Xmymmymy ) 1S @ progressive type II cen-
sored sample o? size my from a sample of size n; drawn from a Weibull distribution,
with progressive censoring scheme (ry, ro, ..., T, ).

Suppose also that Y = (Yiimang s Youmama s -+« » Ymommams) 18 & second (unobserved)

independent progressive type Il censored sample of size my from a sample of size no

drawn from the same population, with progressive censoring scheme (s, So, ..., Sm,)-

The first sample is referred to the ”informative” (observed) sample, while the second
one is referred to the (future) sample. Based on an informative progressive type II
censored sample, our aim is to predict the kth order statistic in the future sample;
Yimams » B =1,2,...,m9, and also to construct the predictive interval for Yy.,.,.n,-
This is the two-sample prediction technique.

To obtain the Bayes predictive estimator of ¥ = Yy, , £ = 1,2,...,mgy, under
different loss functions used in the previous section, we need the posterior predictive
density of Y = Yiinym,-

The posterior predictive density of Y = Yj.;n,m, can be obtained as follows :
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The PDF of Y = Yinoms » K = 1,2,...,mg, is given by [see for instance, Balakr-
ishnan et al. (2001) or Kamps and Carmer (2001)]

k
g(k) (y|Oé, )‘) = Ck—lf(y‘aa )‘) Z Qi k (1 - F(y’% )\))’Yiila (329)
i=1

where

i1
Vi = ng— (Z%’) —it+l,m=n

j=1
k
Cio1 = H Vi,
i=1
k

an = ]

J=1
JFi

yforl <i<k<my ,and for k=1, a1 =1.
Vi — Vi

Based on the PDF (1.1) and CDF (1.2) of the Weibull distribution, the PDF of
Y = Yiemom, » K =1,2,...,may, Eq.(3.29), becomes

k
9o Yl A) = Ci_1aA y* Z ai e Y (3.30)
i=1
Based on a progressive type II censored (informative) sample X and Eq.(1.5), the
posterior predictive density function of Y = Yin,m, , K =1,2,...,mg, is given by

g(];(y|047)\> - EposteTiOT [g (y|a,)\)}

= //g<k) (y|a, A) 7(a, )\|X)dad)\

k

= //Ck 1oAY Y e w(a, A X)dacdX.  (3.31)

0 =1

Under the square error loss function L;, the Bayes predictive estimator of ¥ =

Yi:mam, €an be obtained as
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YBPL = Er (Y[X)

k
_ / //Ck1aAy°‘Zai7ke_’\”yaw(a,)\|X)dad)\ dy.
0 0

i=1

Based on MCMC samples {(a;, \;); [ = 1,2, ..., M}, the simulation estimate ¥ 5 of
Y = Yimym, Will be

o0 M k
. 1 a
yBPL / [M Z Cr_10q\ y™ Z a; e~ NY l] dy
0 =1 i=1
C M k ©0
T IR LT / Y e dy.
=1 i=1 o

By making the transformation u = \;y;y*, and converting the integrand to the PDF

of gamma distribution, the simulation estimate of Y = Yj.;,,.n, becomes

1
F1+4)

M k
var - C;;zamzaw
=1 al()‘l%’) o

Ck . i 1+ )
- iy X —— 1 (3.32)
=1 ; (/\l)al( i) e

Under the absolute error loss function Ly, the corresponding Bayes predictive esti-
mator of Y = Yi.n,m, denoted by Y52 is the median of the posterior predictive
density, Eq.(3.31), which is obtained by solving the following equation with respect

to YBPQ

or equivalently to

P (ylo, \) dy = =. (3.33)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



38

Based on Eq.(3.31), Eq.(3.33) is equivalent to

(o] (o oliNe o] k

_ s 1

/ //Ckla)\y“ 1'2@“66 My W(Q,A])N()dad)\ dyzﬁ.
y BP2 0 0 =1

As before, based on MCMC samples {(ay, \)); [ = 1,2,..., M}, the simulation esti-
mate YBP2 of Y = Yimam, can be obtained by solving, with respect to YBP2 the

following equation

1 & k |
a;—1 —A\vi Yy _
/ [M;Cklal)\ly ! ;ai,ke iy ] dy = 5’

Yy BP2

which is equivalent to solving

Ot & k r 1
]’:/;1 Z N Z @ o / Yyt em N gy = 7 (3.34)
=1 =1 i

By making the transformation u = \yy,;y*, Eq.(3.34) is equivalent to

M k O BP2\a

Ckfl e—Az%‘(Y ) 1

MY agx =

M ;al l;a * QA 2

or equivalently to
M - BP2\«

: = —. 3.35
VT (559

Under the LINEX loss function L3 with a* # 0, the corresponding Bayes predictive

estimator YB3 of Y = Yi:mom, canl be obtained as
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YBPB
0

=)

0

=)

LO

As before, based on

= [E r (Y™ |data)

oo o0 k
= / / / Ch_qjahy® @1 Z ik eV (o, N\ X)) dad) | dy
0 0 =1

1

a*

= /y“* g4, (yla, A) dy

a*

MCMC samples {(a;, A); 1 =1,2,..., M}, the simulation esti-

mate YB3 of Y = Viumgm, will be

YBPB

M k a
1 * o«
<_U E Croaghy®= @t E ;e MY l) dy

=1 i=1

0\8

1
] a*

C M k
k-1 oap—a* =1 =Xy y*l
E i\ E aik | Y™ e MY dy
M ,
=1 i=1 0

By making the transformation u = A\jy;y*, and converting the integrand to the PDF

of gamma distribution, the simulation estimate of ¥ = Yj.;,.n, becomes

~ -Ck—l M i F<1 - ﬁ) ¢
YBP3 = Zal)\l Zaik X x m
L M =1 i=1 Oéz()\l%)l_CTl
1
r M k a* —aF
G e B
= @ X — — ) (3.36)
M EE T '
To obtain prediction bounds on Y = Yin,m, , & = 1,2,...,m9, we need the pre-

dictive distribution

function of Y = Yi.un,m,, Which depends on the distribution

function of Y = Yimyms-

Based on Eq.(3.30),

the PDF of Y = Yiun,m,, the distribution function of ¥ =

Yie:mym, can be obtained as follows
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G(k) (y|Oé )‘) g(k) (Z|Oé, )‘) dz

k
— . . @
Ch_qa 2971 E a; j; € M2

i=1

k? o
- —_ JpeTe d
= Ch_i1a) 5 ai,k/za Lo iz gz
=1 Y

S S Y—

By making the transformation u = Av;2%, the distribution function of Y = Yi.;n,:n,

becomes

k
a; vy
Giy(ylon \) = Croy D =5 (1 — e, (3.37)

i=1 It

Under the square error loss function Ly, the predictive distribution function of Y =

Yimoms, canl be obtained as

G{;) (y|0é7 /\) = posterwr [ (y|0& /\)]

= // y(ylo, ) a/\|X)dad)\

= //Ckl Z ai’.k (1 — e M) (v, A|data) do d.
00

—1 i

Based on MCMC samples {(aq, \;); | = 1,2,..., M}, the simulation consistent esti-
mator of Gﬁ) (yla, A) will be

M
G Z [Ck 1 Z & k( e M)

=1 g

Under the absolute error loss function Lo, the simulation estimator of GZ@) (y|a, A),

can be obtained by using the following algorithm :
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Algorithm 3

e Step 1
Evaluate G = G (y|o, A), Eq.(3.37), at each sample (a;, A;) for I = 1,2, ..., M,
to get G1 y G2 g ey GM

e Step 2
Order G1 , Gg, e GM as G(l) < G(g) < o< G(M).

e Step 3

The simulation estimator for Gé) (y|a, A) is given by

GA{];)Qy) = Median [G(l) y G(Q) g eee G(M)} .

Under the LINEX loss function L3 with a* # 0, the predictive distribution function

of Y = Yim,m,, can be obtained as

1

G{I.c) (3”057 >\) = [Eposterior ( G(k) (y|0&, )‘) )_a*:| B

= // w(yla, X)) - 7(a, A|data) dac dX

k -
= // (C’k_l Z a’;"k (1-— e_’\%ya)> 7(a, )\|)N() dodA
[0 0 i=1 '

As before, the simulation estimator of sz) (y|a, A) will be

a

_ 1
(v) = z O 12% _ e |
(’f M Yi

Under all different loss functions Ly, Ly and L3, the (1 — 8)% PI of Yy, , £ =
1,2,...,mg, can be found by solving the non-linear equations (3.38) and (3.39) for
the lower bound L and upper bound U :

P(Y < L|data) = g & Giy(L) = g (3.38)
P(Y < Uldata) =1 — g & GhyU)=1- g (3.39)
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CHAPTER 4

Statistical Inference Based on Record
Data from Weibull Model

4.1 Maximum Likelihood Estimation

Let Xvay, Xv(), .-, Xum) be the fist n upper record values arising from a sequence
of iid Weibull variables with PDF and CDF being defined in Eq.(1.1) and Eq.(1.2),

respectively. The likelihood function of this sample is

n—1
f(mU(i)‘O‘? A)

L(a, N|data) = Tym)|o, A

e M) H - (4.1)
i=1
The natural logarithm of the likelihood function is

In L(a, Aldata) = nlna+nlnA — Az, + (@ —1) Z In zy), (4.2)

i=1

where In x denotes the natural logarithm.

By differentiating Eq.(4.2) with respect to @ and A and equating the resulting terms

to zero, we obtain the following estimating equations

0 n N &

M InL = o ALy Ny ) + ;:1 Inzyi) =0, )
0

ZL=" — I = 0.

1)) A
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By eliminating A in Eq.s(4.3), we obtain

n
dnrp = (4.4)

nlnzym) — > Inzyg
i=1

and then

;\MLE = n(ZEU(n))_dMLE. (45)

4.2 Bayes Estimation and Credible Intervals

In this section, we estimate the unknown scale parameter A and it’s corresponding
credible interval when the shape parameter « is known. Also, we use the the Gibbs
sampling method to estimate the two parameters a and A when the shape parameter
« and scale parameter A are unknown, under different loss functions and with respect

to the prior(s) described in subsection [1.3.1] of chapter 1.

4.2.1 Shape Parameter Known

Based on the first upper record data Xy ), Xv(2), ..., Xu(m), and by combining the
likelihood function, Eq.(4.1), and the prior density Eq.(1.3), we obtain the following

theorem

Theorem 3
The conditional PDF of A given o and data is Gamma(a +n, b+ z{;,,) having the

form

)\aJrnfl f)\(b+x‘l)‘](n>)' 4.6
I'(a+n) ‘ (4:6)

m (Ao, data) =

Proof
From Eq.(4.1) and Eq.(1.3), we have

m (Ao, data) o« L(a, \) m(\a,b)
o /\ne—kxg(n) A& Lp—Ab

)\a—i—n— 1 €—>\(b+$g(n) )
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Under the square error loss function L;, the Bayes estimator A B, of X\ is given by

a-+n

5\Bl = Eposterior(/\|a7 data) = / )\7r1<)\|04, data) d)\ - b + ZL‘g(n) '
0

For the absolute error loss function L, the Bayes estimator 5\32 of A will be the

posterior median and obtained by solving the following equation with respect to w

1
1 (M, data) d\ = 5

St~

That is, 5\32 is the value of w satisfying Eq(4.7), or Eq.(4.8)

1
1 (A, data) dX = 5

8\8

Based on Eq.(4.6), Eq.(4.8) is equivalent to

0 a+n
/ b + xU )\a—i-n—l e—)\(b-i-a:g(n)) A\ — 1
(a + n) 2

By making the transformation u = A(b + mg(n)), we immediately obtain

o0

/ ua—i—n—l e~ 1
——du = —,
I'(a+n) 2
(b—i—xU(n))

or equivalently,
at+n—1 —u 1
u e duzil“(ajtn).
(b—l—xg(n))w

(4.7)

(4.8)

Based on Eq.(3.13), the incomplete gamma function, the Bayes estimator 5\32 of A

is the value of w satisfying the following equation

1
T (a+n, (b+xf,)w) — §F(a +n)=0.
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Under the LINEX loss function L3, for any given a* < a + n, the Bayes estimator
A3 of ), is given by

;\B3 = [Eposterior(A_a* |data)] _ai* ’

where

Eposterz’m"()\ia* ’data) = Aia* T ()\‘Ck, data) d
(b + x%(n))a—i-n

)\—a*-‘ra-‘rn—l —A(b—l—x%(n))d/\.
[(a+n) @

0\8 0\8

By using the PDF of gamma distribution, we have

I'(—a*+a+n)

E I'(a+n)

‘posterior (/\—a* |da’ta) -

(b+ )" -

Therefore, the Bayes estimator A g3 of A becomes

1
N MN(—a*"4+a+n)] 1
Ap3 = X ———.
b3 { I'(a+n) } b+ af
The (1 — 3)100% credible interval of A, (Cp,Cy), can be obtained by using the
equations (3.11) and (3.12) as follows :

From Eq.(3.11), we have

o
« atn
J G s s gy -1 -2
[(a+n) 2
CL

By making the transformation u = A(b + xg(n)), we immediately obtain

3 atn—1 ,—u
/ e =12
I'(a+n) 2
(b+x°(}(n))C’L

which is equivalent to

o0

/ u et du = <1 - g) I'(a+n).

(b+xg(n))CL
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Based on Eq.(3.13), the lower credible interval of X is obtained from

T (a+mn, (b+25,))CL) = (1 — g) I'(a+n). (4.9)

Similarly from Eq.(3.12), we obtain the upper credible interval of A from

I'(a+n, (b+ xg(n))CU) = gf(a +n). (4.10)

By solving Eq.(4.9) and Eq.(4.10) for C', and Cy using a suitable numerical method,

we obtain the lower and upper credible interval C';, and Cy, respectively.

When a is positive integer, the credible interval for A can be obtained as follows:
Since A has Gamma(a+n, b+xy,) ), then a pivotal statistic Q = 2A(b+ z{;,,)) has
X%(a )" Hence, the (1 — 3)100% credible interval for A is given by

2 2
X(1-2, 2(a+n)) i< X(8 2(atn))

2<b + x%(n)) 2(b + x%(n)) ’

where X%g -y 1 already defined in chapter 3.
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4.2.2 Shape Parameter Unknown

In this subsection, and under different loss functions Lq, Ly and L3 with a* # 0, the
Bayes estimators of a and A, or in general of § = g(a, A), are obtained when both
parameters @ and A are unknown. Based on the prior distributions m;(\|a,b) and

mo(a), the posterior distribution of o and A is defined by

L(a, Mdata) . m (Ao, a, b)ma(a)
L(a, Mdata) . m (Mo, a, b)ma () da dA

(o, A|data) = (4.11)

0\8
0%8

Under the square loss function L;, the Bayes estimator of § = g(«a, A) will be
Op, = E osterior (0]data) = // 0 (o, A|data) da dA.
0 0

For the absolute error loss function Lo, the Bayes estimator éBQ will be the median

of the posterior distribution 6, i.e.
éB2 - Medposterior(9|data>.

The Bayes estimator 6z5 of 6, under the LINEX loss function Lg, can be obtained

as

(L*
1

O3 = [Eposterior(07% |data)] ™ = // 0= n(a, A|data) do dX
0 0

As in chapter 3, the Bayes estimators 0 B1, 0 B2 and 0 B3, under different loss functions
can’t be obtained in closed forms. Here we use Algorithm 1 of chapter 3 to com-
pute the Bayes estimators above and also to construct credible intervals. To apply
the Gibbs sampler method, we need the conditional distributions 7 (\|e, data) and
ma(a|data). Note that 7 (\|a, data) is obtained in Theorem 3, and for m(aldata),

we state the following theorem :
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Theorem 4
The conditional PDF of a given the data is given by

- 1
mo(a|data) < mo(a) « HxU@) X

atn’

and it is log-concave.

Proof
From the posterior distribution of @ and A, Eq.(4.11), we have

m(a, A|data) o Lo, N|data) m (N a, a, b)ma ()

n
Az _ 1 -
x a"A'e Mum | |x[‘}($ A Tle ™ ()
i=1
_ -1 +n—1_—A(b+z& )
= m(a)a” | ng(i) AT e U,

The PDF of « given data is

mo(aldata) = /W(a,)\\data)d)\

0
o)

x Wz(a)a”Hx?}(S/)\“*”16_’\(b+m?f(n>)d)\
i=1 4

- I'(a+n)
= 7T2(Oé)0[n .’Eaiil X T o Nan
g ve = (b + T ()T

1

X WQ(O()Oén .’L'a_z-l X T e Nan
g ve) (b+ xU(n)) +

Finally, we prove the log-concavity of m(a|data) as follows :

Counsider

(4.12)

Inmy(aldata) = C' + Inme(a) + nlna + (o — 1) ZlnxU(i) — (a+n)In(b+ x7,),

i=1

where C is some constant.
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Now,

l‘?](n) .In xU(n)

(In 72 (a|data)) = (Inme(a))" + g + ;1H$U(i) —(a+n). b+ :l:(gf(n)

e R

(nms(aldata))’ = (nm(@))’ — 75— (a+n). >
[b—kxg(n)}
«a 2
= (Inm(a))” - no_ (a+n) bagy () [In2g(m)]
2
(@

[b + 5”%(@} ’

Since, () is assumed log-concave, as mentioned in subsection [1.3.1] of chapter 1,
we have (Inmy(«))” < 0, and thus (Inmy(«|data))” < 0, for a,b > 0. It follows that

mo(a|data) is log-concave density.

By using Theorems 1 and 2 and Algorithm 1 of chapter 3, we can generate MCMC
samples from the posterior distribution of o and A, Eq.(4.11), and then use these
samples to obtain the Bayes estimators of # = g(«, \) and the corresponding credible

intervals.
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4.3 Bayes Prediction

In this section, we will predict the future records based on observed records, under
loss functions Ly, Lo and Ls with a* # 0, when both one-sample and two-sample
prediction problems are used.

Prediction problems come up naturally in several real life situations, for example,
the prediction of rainfall extremes, highest water levels and sea surface or air record
temperature. There has been development in this area over the past two decades.
See, for example, Ahsanullah (1980) and Nagaraja (1984). Using generalized model,
Bayesian prediction interval for the future generalized order statistics (including
record values as a special case) was studied by Al-Hussaini and Ahmad (2003). Madi
and Raqgab (2004) considered the problem of Bayesian prediction of temperature

records using the Pareto model.

4.3.1 One-Sample Prediction

Suppose that we observe only the first m upper records & = (zy ), o), - Tu(m))-
The goal is to obtain the Bayes predictive estimator un(;er different loss functions,
as well as constructing the Bayes predictive interval for the nth future upper record
Xv(n), where 1 <m < n.

By using Eq.(1.5), the posterior predictive density of X,y can be written as

o0

WXU(H)(M«E) = //fXU(n”%(y]a,)\)ﬁ(a,)dg) dad), y > xym),
00

where fx, . (y|z) is the conditional density function of Xy, given the data z.

Using the fact that the record values satisfy Markov property, the conditional PDF

of Xy (n) given x is just the conditional PDF of Xy, given xy(y,, i.e.

fXU(n)‘g(y|a7 A) = fXU(n)‘xU(m) (y|&, )\)
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Based on the equations (1.7) and (1.9), the conditional PDF of Xy ,) given @y (m)

can be written as follows

[H(y) = Haoe)]" " o))
x ,)\ — ’ 9 > m
Fxvlauom (s A) (n—m —1)! 1 — F(xy(m)lo, A) Yot
n—m—1
B [)\yo‘ — )\x‘&(m)] Ay le— N
B (n—m—1)! e MU m)
QAT a @ n—-m—1 41 —\y*—2a®
= o e e ),

By using the binomial expansion, we immediately obtain

(n—m—1)!

=

al\" mGAJ:U(m) n—m—1 n—m—1 i miDa
fXU(n)lfCU(m)(mO‘v)‘) = T Z (—1) Y Ty

% yaflef/\y

QN AT (m)

n—m—1
. z : n—m-—1 n—m—i—1 _ (n—m—i—1)a
 (n—m—1)! ( 1 )(_1) Fum)

i=0
X Pt s (4.13)

Based on Eq.(4.13), the posterior predictive density of Xy (,) at any point y > xy(m)

is then

f§U(n)|£<y’Oéy )\) = EposterioT‘ |:fXU(n)|zU(m) (y|04, )\):|

a"” me/\xU(m) i n—m-—1 n—m—i—1 _ (n—m—i-1)a
B G s

0 1=0
X y"‘(Hl e n(a, )\|:r:) dad), y > Ty(m)- (4.14)

Under the square error loss function L, the Bayes predictive estimator of Y = Xy,

can be obtained as

Xiiy = Epe(Y2)

= / yf)lgU(nﬂg(y'aa )‘) dy

LU (m)
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n—m—1
N AT (m) n—m-—1 n—m—i—1 _(n—m—i-1)a
L= S G R

0
Zu(m)

x y e~ N () N|z) dod ) | dy.

As in chapter 3, using MCMC samples {(a;, \;); j = 1,2,..., M}, the simulation
estimate XI?(I:S of Y = Xy, will be

M n—m Az n—m-—1
. 1 a ;N e U n—m-—1 , i)
BP1 __ J7g _1\n—m—i—1 _(n—m—i—1l)a
Xom) = / 7o (n—m = 1) ) ( ; )( 1) Tom)

1=0

n—m, Nz n—m—1
Ol]>\ J U("L) n—m—1 n—m—i—1 _(n—m—i—1)a;
= Z )1 Z ( i )(_1) Tom)

n —
% / ya (z+1) =Xy dy
LU (m)

By making the transformation v = A\;y* and using the gamma distribution, the

simulation estimate X 5&% of Xy (n) becomes

M Ajx n—m—1
o 1 a/\nm JU(m) n—m—1 , i D
BP1 __ n—m—i—1 _(n—m—i—1)a
Xym)y = Z (n—m—1)! Z ( i )(_1) Tu(m) J
j:1 =0

F(a—lj ERRPYE
Litl ’
Qj ()‘j)a]
M )\x n—m—1
1 Aj J n—m-—1 nem—i-1 _(n—m—i-1)a;
- X T 2 (e
=0

=1
F(aiJr +1, )\xUm)>
A

. (4.15)
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It is often important to predict the first unobserved record value Xy (;41), the
simulation estimate of the first unobserved record value can be obtained by setting
n=m+ 1 in Eq.(4.15) as follows

M 1
BP1  _ o N 1
X(m+1) M;Ajﬂeﬂu(ﬂ‘(%—i—l Nz )).

Under the absolute error loss function Lo, the corresponding Bayes predictive es-
timator of Xy, 1 < m < n, denoted by X(]JS(IE is the median of the posterior
predictive density of Xy(,), Eq.(4.14), which is obtained by solving the following

equation with respect to X 5{3

BP2
XU (n)

1
| Hzla Ny =5, (4.16)

LU (m)

Equation (4.16) is equivalent to

r 1
| Hzla Ny = 5. (4.17)

BP2
XU(n)

Based on the posterior predictive density of Xy, Eq.(4.14), Eq.(4.17) is equivalent

to
0o 00 0O n—m—1
aA\" ™ n—m-—1 n—m—i—1, (n—m—i—Da_ a(i+1)— 1, -y
///[n_ S 2 (T ey
XgR3 0 .

7(a, )\|:B) dad\ dy =

or
0o 00 o0 n—m—1
a\tm n—m-—1 n—m—i—1_(n—m—i l)a Az a(i+1)—
/ // [—(n—m— 0 ( ; )(—1) LU (m) U(m) g
xfy 0 0

(o, Az) dad\ dy =

N

)
N = e
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As before, based on MCMC samples {(c;, \;); j = 1,2,..., M}, the simulation

XBPQ

estimate of Y = Xyym) can be obtained by solving, with respect to X Gngs the

following equatlon

n—m /\ CC n—m—1
Oéj)\ <m> n—m-—1 n—m—i—1 _(n—m—i—1)a;
/ Z (n—m— 1) Z ( i )(_1) LU (m) ]

BP2
XGs

or

M n— )\-zajm n—m—1
1 Z a])\J m U (m) m <n —m — 1) (_1>n7m7i71 x(n—m—i—l)aj

M&~ (n—m-1) ¢4 i u(m)
j=1 =0
aj(i+1)—1 —\jy* 1
X (y J e ) dy = 3
X5

By making the transformation v = Ay, we have

)\n m AJIU( >n

1 U Q; T n—m—1 ( i—1)
o 1 n—m—i—1 n—m—i—1)a;
WL G X (0o

o

1 . 1
X —irl u e dU/ = -,
aj)‘j 2

X(XBE3)%

or

M iz n—m-—1
1 e 7Tum) n—m—1 n—-m—i—1 _ (n—m—i—l)a
Mz(n—m—l)! Z < i )(_/\]) U(m) ’

j=1 =0
% ) 7ud —
/ u e U 9
N(XEE3)

By using Eq.(3.13), the above equation can be written as

J”CU(m)

1 M n—m-—1 n 1
—-—m—= n—m—i—1 _(n—m—i—1)ay
MZ (n—m—1)! Z < >( Aj) Tmy

7j=1 =

T (H 1, ()\ (XEr2)° )) - % (4.18)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



95

Therefore, the simulation estimate X{f{g of Xy, is the solution of Eq.(4.18),

with respect to Xg(lg

In particular, the simulation estimate XBP Um +1 of Xy(m41) can be obtained by setting

n =m+ 1 in Eq.(4.18) and solving, with respect to X(?(P{Ll) the following equation

1
—zewmm NEEZLDY) = 5

or

M
S Mo D1, (K52 = Y

j=1

Under the LINEX loss function Ls, the corresponding Bayes predictive estimator
Xg(fg of Y = Xy, can be obtained as

1
a*

Xim = [ Ep (Y™™ |{)]

o0

_ / v e (vlon ) dy

IU(m)

o Oé)\n m nz’fnzl n—m— 1 ( 1)n_m_i_1 (n—m—i—l)a
- (n—m—1) LU (m)

| zu(m) O 0 =

x D =a" =1 2A 2 0) () A|2) dad\ dy

Based on MCMC samples {(a;, \;); j = 1,2,..., M}, the simulation estimate X'g(fg
of Xy (n) will be
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XBP3 _ ii a;A; " nil n—m-—1 (—1)nm=i-1 (n—m—i—1)oy;
Uln) = M 2~ (n— LU (m)

=0

a*

% yocj(z+1) a*—1 €—>\ (y J— :CU(m)) dy

M (n—m—1)! i Ly (m) e

j=1 =0
- —ar
% / <yaj(z‘+1)—a*—1 YUk > dy
U (m)

By making the transformation u = A\;y* and using the gamma distribution and

Eq.(3.13), the simulation estimate of Xy (,) becomes

M )\ z n—m—1
1 o )\n m Aj U(m) n—m—1 e —i— n—m—i—1)a;
x-S (e

M (n—m-—1)! ¢4 u(m)
j=1 1=0
— o
r (z — 4+ 1, )\j:c(/(m))
X * )
i—o—41
Ojj)\j ’
n—m—1+4+2 o
M aj AT n—m—1
1 /\j erum n—m—1 n—m—i—1 _ (n—m—i—1)a;
|E e o (T e
j=1 i=0
—
F(@—Z——l—l, )\jxgjm) ’
x — (4.19)
In particular, the simulation estimate X 5(1:3 ) of Xy(m41) can be obtained by setting

n=m+ 1 in Eq.(4.19) as follows

M
1 e a* :
BP3 2 A% m Q.
X mrn) = [MZV e >F(1_ e Wu@)]
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To obtain prediction bounds on Y = Xy,), 1 < m < n, under different loss
functions, we need to find the predictive survival function of ¥ = Xy, at any

point ¥ > zy (). The predictive survival function is defined by

S)P(U(n)|£<y|a7 )‘) - Epostem‘or (SXU(")|£(y|Oé, )\))

= //SXU(n)|x(y|oz,A)W(a,)\|x)dad)\, (4.20)
00

where S Xt is the survival function of ¥ = Xy (..

Using the Markovian property of the record order statistics, we have

SXU(n)‘f(y’a’ >\) = SXU(n)\GJU(m)(y’av )‘)-

Now
SXU(n)|$U(m) (yla,A) = PY > 3/|37U(m))

Y

}nml

7’ [H(z) = Havm) ey
(n —m—1)! 1= F(zygmla, A)

)

By making the transformation v = H(2) — H(zy(m)), we have
H(z) =v+ H(zym), and 1 = F(2) =e (1 = F(zym))-

This in turn, the survival function becomes

pn—m 1671)
SXU(n)\xU(m)@’a’ A) = (n—m—1)! dv.

By using the relation between the incomplete gamma function and sum of poisson

probabilities

7“k_1 ¢’ kz _LE. (4.21)

xT
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the survival function becomes

-1 _

e 10 1evw)) [H(y) — H(zyw)]’

n—

SXU(n)|a:U(m) (y|Oé, )‘) = Z

1
j=0 I
R [ 1—F(yla,\) } [_ I ( 1-F(yla)) )T
o Z 1=F(zy(m)l|o,A) 1=F(2y (m)la,\)
— - .
3=0 I
Since
A\
- F(y|0&, >\) . e — ¢ Ay f:r‘[}<m))
1 — F(zpmmla, A) e Moo
then the survival function becomes
n—m-—1 fA(y“*x?}(mQ [)\( a J
e Yy xU(m))]
SXU(n)\xu(m) <y|o-/> /\) Z 1 (4.22)

o [n—m-1 “AY* =2 (1)) Nu® — 2 j
(& Yy T m
SXU( |z (yle, A) // [ Z [( b)) 7T(Oz,/\|:£) dacd.
(4.23)

Notice that Eq.(4.23) can’t be expressed in closed form and hence can’t be evaluated
analytically. By using the MCMC samples {(a;, A;); ¢ = 1,2,..., M} obtained by
using the Gibbs sampler method, and under the square error loss function Ly, the

simulation consistent estimator of the predictive survival function for Xy, will be

b [t MOP-s) p g — g )

SHRROEES 3D

|
i=1 j=0 J:

Under the absolute error loss function Ls, the simulation estimator of the predictive

survival function for Xy (,,), can be obtained by using the following algorithm :
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Algorithm 4

e Step 1
Evaluate S = Sx, ey (W, A), Eq.(4.22), at each sample (ay, A;) for i =
1,2,...,M, toget S;, Sy, ..., Sy
e Step 2
Order Sl, Sg, ey Sy as S(l) < S(Q) < o< S(M)
e Step 3
The simulation estimator of the predictive survival function for Xy (,) is given
by
§§U(")|£(y) = Median [Sqy , Se) . -, Sow)

Under the LINEX loss function L3, the simulation estimator of the predictive sur-

vival function for Xy (), can be obtained as

_ L
—a* a*

n—m—1 e*)\i(y&i*xgi(M)) [)\z (y‘” - IIO]M m))]j

op 1« (
S ® = |37 22| 2 7

i=1 §=0

A (1 = B)% PI for Xy, 1 < m < n, can be obtained by solving the non-linear
equations (4.24) and (4.25) for the lower bound L and upper bound U :

P(XU(n) > Llxr)=1-— § = 5@; Ly=1- g, (4.24)

U(n)‘g(

g

P(Xye > Ulg) =5 & S%,,.(0) =5

IV

(4.25)

We need to apply a suitable numerical method to solve these non-linear equations
as they can’t be solved analytically. In particular, a (1 — 3)% PI for Xy(n41) can
be obtained by solving the equations (4.24) and (4.25) when n = m + 1.

4.3.2 Two-Sample Prediction

Let Xuay, Xue) s ---» Xu@m) be the first m observed records from a sequence with
WE(a,A). Let Yy, Yue), ..o Yuw) be the first n record values from another in-

dependent sequence sample from the same distribution.
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Based on the observed record sample, we are interested in the predicting of the
kth upper record value Yy, 1 < k < n, of the future sequence, and obtaining
prediction interval of Yy (x).

The PDF of the kth upper record value Yy is given by [see Eq.(1.7) and Eq.(1.8)]

[~ In(1 = F(yla, )"

9o Wla, A) = k) f(yla, A)
. —Ay*\Tk—1
[ ln(;(k?; )] al ya—l G—Ay“
B alk ab—1 —Ay®
= TH gkt (4.26)

To obtain the Bayes predictive estimator of ¥ = Yy, 1 < k < n, under different
loss functions, we need the posterior predictive density of Y.

The posterior predictive density of Yy () is denoted by gf: : (yla, A) and given by
gi)(ylm A) = Eposterior [g(k)@/’% /\)]

= //g(k) (le(, )\) 7T(Oé,>\|data) do d)
0

0
_ //a_)\kyak_l e 1(a, N data) da d. (4.27)
(k) ’
0 0

Under the square error loss function Ly, the Bayes predictive estimator of Y = Yy,

can be obtained as

Y = Egr. (Y|data)

- /ygf; (yle, ) dy
0

- / 770‘Ak ok = 1(o, Ndata) decd)| d
= F(k:)y e (o, A|data) da Y.
0 0

0

As before, based on MCMC samples {(a;, \;); i = 1,2,..., M}, the simulation esti-
mate Y P of Y = Yy will be

= |
0
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By making the transformation v = \;y® and using the gamma distribution, the

simulation estimate of Y(ﬁf)l becomes

yBPL _ 1« O‘i)‘fr(k—i_a%)
Uk) = MZI r'(k) )\k—f—%
1= O(,L i *
M 1
1 Lk + )
= T (4.28)
=1 AT (k)

Under the absolute error loss function L, the corresponding Bayes predictive esti-

YBP2

mator of Yy denoted by ) > is the median of the posterior predictive density

of Yur (), Eq.(4.27), which is obtained by solving the following equation with respect
to Yiiky

BP2
Yiiny

/ I P (yla, N) dy %, (4.29)

or

/ o7 (yla, \) dy % (4.30)

BP2
Yire)

Based on Eq.(4.27), Eq.(4.30) is equivalent to

oo e’ le’s) A ) 1
/ // R k=L g (o, Ndata) dad\ | dy = 3
Y[ﬁif 0 0

Based on MCMC samples {(a;, \;); i = 1,2,..., M}, the simulation estimate Yf(],:f

of Yf(ff can be obtained by solving, with respect to }Afﬁff, the following equation

[e.9]

M k: 1
il i alk 1 f)\zyz —
/ [Mg ] dy =3,

BP2
YU(k)

which is equivalent to solving

1M T
Z / Yokl e AN gy | = = (4.31)
i=1 YBPQ

U(k)
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By making the transformation u = \;y®, Eq.(4.31) is equivalent to

1
e

M o0
7 “leuyg
I'(k) | cuA? / e
X (YR

Based on Eq.(3.13), Eq.(4.32) becomes

The simulation estimate }A/[ﬁff of Y[ﬁ

1 U F(k, Ai(Yzﬁff)“i) 1

M I'(k) 2’

=1

P

YBP2

can be obtained by solving Eq.(4.33) with respect to o)

Under the LINEX loss function Lj3, the corresponding Bayes predictive estimator

Y[ﬁ],:f of Y = Yy, for 1 <k < n, can be obtained as

Yoty

[Egp (Y~ |data)

1

(k)

o0 a*

[ ol dy

0
oo

0

DN | —

/ / / )\ yok=a" =1 o= (o, N|data) dad) | dy
0(k) |
0 0

(4.32)

(4.33)

kf, under the absolute error loss function Lo,

_ 1
aF

Based on MCMC samples {(ay, \;); i = 1,2,..., M}, the simulation estimate Y;323

of YUB(f)?’ will be

YBP3

U

(k)

U(k)
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By making the transformation u = \;y®, the simulation estimate Yf(f)?’ of Y[f;(f)?’

becomes

yores _ |1 o [a (k=) )
R (s
1= Q; A, 4

- = . (4.34)

To obtain prediction bounds on Y = Yy, for 1 < k < n, we need the predictive
distribution function of ¥ = Yy ), which depends on the distribution function of
Y = Yyu.

Based on Eq.(4.26), the PDF of Yy ), the distribution function of Yy ) can be

obtained as follows

)

Guolyla, \) = / G (2l \) 2

0
oo

= 1—/g(k)(z\a,)\)dz

Y
o)

a\k
= 1= Y oak—1 Az
/F(k) z e dz

Y

ark [
- 1-— ak—1 —Az% dz.
(k) /Z ‘ ©

Y

By making the transformation u = Az%, we have

a\ 1 r
A)=1- — [ ured
G(k)(y|a> ) F(k?) a/\k/u € u
Ay

Based on Eq.(3.13), the distribution function of Yy becomes

L'(k, Ay®)

G(k)(y|a7 )‘) =1- F(k?)

(4.35)
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Under the square error loss function Ly, the predictive distribution function of Yy,

can be obtained as
Gﬁ“)(ma’)‘) = Eposterior[ ( |OZ )\)}

= // ) (yla, A) (o, A|data) dac dX

_ 77)[ k Ay )] (a, Ndata) dod.

Based on MCMC samples {(a;, \;); i = 1,2, ..., M} obtained by the Gibbs sampler

method, the simulation estimator of G/, (y|a, A) will be

. 1 T(k, Ay
Gin(y) = M; [1 - %}

Under the absolute error loss function Ls, the simulation estimator of G@) (y|a, A)

can be obtained by using the following algorithm :

Algorithm 5

e Step 1
Evaluate G = G, (y|a, M), Eq.(4.35), at each sample (o, A;) fori =1,2,..., M,
to get G1 s GQ s eee G]\/[

e Step 2
Order Gy, Gg , ..., Gy as G(l) < G(z) < ... < G(M)

e Step 3

The simulation estimator for Gﬁ) (yla, A) is given by

éa)(y) = Median [G(l) s G(Q) s ey G(M)]
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Under the LINEX loss function L3, the predictive distribution function of Yy
can be obtained as

1
*

Gﬁ“) (y|a, )\) = [Epostem'or (G(k)<y|047 /\) )7(1*] e

a*

/ (Guy(ylen A) )_a* 7(a, N|data) doc dX
0

aF

/
77 (1 a F(?(—/j)ya)) N (o, A|data) da dX

Based on MCMC samples {(a;, A;); i = 1,2,..., M}, the simulation estimator of
G@) (yla, A) will be

_ 1
3

M —ax* a
A 1 Lk, \y™)
P s A\
= |= |-~y .
Under all different loss functions L;, Ly and Ls, the (1 — 3)% PI for Y = Yy,
1 < k < n, can be obtained by solving the non-linear equations (4.36) and (4.37)

for the lower bound L and upper bound U :

P(Y < L|data) = g & Ghy(L) = g, (4.36)

g

2 B
P(Y < Uldata) =1 — 5 © Gly(U) =1- 5

(4.37)

As before, we need a suitable numerical method to solve these non-linear equations.
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CHAPTER 5

Simulation Study

The equations for estimation and prediction obtained in chapters 3 and 4 based on
different loss functions described in subsection [1.3.1] can’t be solved analytically.
For this, we use Mathematica Package V7 to solve these equations.

In this chapter we conduct a simulation study to examine the behavior of the max-
imum likelihood estimator and the Bayes estimators as well as the different Bayes
predictive estimators, based on progressive type Il censoring data and record data.
In both cases Bayes estimation and prediction, we have assumed @ = 2, A = 1 to
generate progressive type II censored data and record data. The progressive type
IT censored data were generated by using the algorithm proposed by Balakrishnan
and Aggarwala (2000). The first n observed records were generated by using the

transformation:

oo\ e
XU(k) = (M> ,k‘ = 1,2,...,%,

where {e(7),7 > 0} is a sequence of i.i.d Exp(1) [see Arnold et al. (1998), p.20].
For both types of data (progressive and record data) we have computed the Bayes
estimators, for the Weibull parameters v and A\, with respect to different loss func-
tions: square error (Sq. err.) (L;), absolute error (Abs. err.) (Ls) and LINEX (Ls)
with different choices of a* : 0.1,1,5. To compute the different Bayes estimators we
have assumed 7o (), the prior of o, has gamma density function with the shape and
scale parameters ¢ and d, respectively. For the computations of Bayes estimators,
we consider two types of prior for both a and A: first prior is the non-informative
prior, i.e a = b = ¢ = d = 0, we call this prior as Prior 0, second prior is the infor-
mative prior, namely a =b =1, ¢ = 2,d = 1, we call this prior as Prior 1. We have
computed the MSEs for the different Bayes estimators based on 1000 replications.

The credible intervals for the Weibull parameters a and A are computed.
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For the computations of prediction, we consider only Prior 1 and loss functions:
Sq. err. (Lp), Abs. err. (Ly) and LINEX (Lj3) with different choices of a* :
0.1,0.5,1.0. Based on progressive type Il censored data we have obtained the point
predictors and 95% PLs for the missing order statistics Yy, k = 1,...,75,5 = 1,...,m
in the one-sample prediction problem and for the kth order statistics Yiingm,, kK =
1, ..., my of unobserved progressively type II censoring sample in the two-sample pre-
diction problem. Also, based on record data we have obtained the point predictors
and 95% PLs for the future nth record Xy, in the one-sample prediction problem
and for the kth record Yy of unobserved record sample of size n in the two-sample

prediction problem.

5.1 Results Based on Progressively Type II Cen-

sored Data

In this section we present the results of the Bayes estimators for the Weibull param-
eters a and A, and their corresponding credible interval lengths, when Prior 0 and 1
are used. As well as we present the results of one-sample and two-sample prediction

problems. These results are reported in Tables 5.1-5.7, for the following schemes:

Scheme 1: n=30,m =10, (r; =... =74 =5,r5 = ... = 190 = 0), (30,10, 4*5,6*0)
Scheme 2: n=30,m =15, (1 =..=1r=0,17 =rg =79 = 5,190 = ... =115 =
0), (30,15, 60, 3*5, 6%0)

Scheme 3: n =30,m =20, (r; = ... =113 = 0,719 = 199 = 5), (30, 20, 18*0, 2*5)
Scheme 4: n =30,m =25, (1 = ... =194 = 0,795 = 5), (30,25, 24*0, 5)

Scheme 5: n =40,m =10, (r, = ... = 110 = 3), (40, 10,10*3)

Scheme 6: n =40,m =20, (ry = ... =110 = 2,711 = ... = 199 = 0), (40, 20, 10*2, 10*0).

In Table 5.1, we present the MLEs for o and A as well as the Bayes estimates
of o and A, under the different loss functions L, Lo and L3 with different choices
of a* : 0.1,1.0,5.0, when Prior 0 is used. The numerical results of the MLEs for a
and \ were computed by using the equations (3.4) and (3.6). The numerical results
of the Bayes estimators for o and A, and their corresponding MSEs, were computed
using the equations given in steps 4-6 of Algorithm 1. The codes of Mathematica 7
are used for this purpose which appear in Appendix [2].
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In Table 5.2, we present the Bayes estimates of o and A, under different loss func-
tions L, Lo and L3 with different choices of a* : 0.1,1.0,5.0, when Prior 1 is used.

In Table 5.3, we show numerical comparisons between the average lengths of the
credible intervals of a and A when Prior 0 and 1 are used for all schemes considered.
The average length of the credible intervals for o and A were computed by using
step 7 of Algorithm 1.

In Table 5.4, we present the point predictors and Pls for the missing kth order
statistics Yy, k = 1,...,75,7 = 1,...,m, based on observed progressive type II cen-
soring sample of size m with censoring scheme (rq,rs,...,7,,), for all schemes de-
scribed above and for all different loss functions L, Lo and L3 with different choices
of a*: 0.1,0.5,1.0. Based on MCMC samples {(a;, \;),7 = 1,2,..., M} obtained by
using steps 1-3 of Algorithm 1 and M = 1000, the point predictors for the missing
order statistics Yy.,, in censoring stage j, k = 1,2, ..., 7;, were computed under differ-
ent loss functions, by using the equations (3.20), (3.23) and (3.24), respectively. The
95% lower bound L and upper bound U of PI for the missing kth order statistics Y.,
were computed by solving the equations (3.27) and (3.28) with respect to L and U,

respectively. The codes of Mathematica 7 are used for this purpose, see Appendix [3].

In Table 5.5, we present the performances of one-sample Bayes predictors when
Prior 0 and 1 are used, for scheme (15, 10,5%0, 5,4*0).

In Table 5.6, we present the point predictors and Pls for the future kth order statis-
tics Yiumgma, & = 1, ..., mo with censoring scheme (s1, So, ..., S, ), based on observed
progressive type Il censoring sample {Z;.m,.n,,¢ = 1,...,m1} with censoring scheme
(r1,72, ..., T, ), and for different loss functions Ly, Ly and Lz with different choices of
a*:0.1,0.5,1.0. Based on MCMC samples {(a;, A;),7 = 1,2,..., M} and M = 1000,
the point predictors for Yi.m,m,, £ = 1,2, ..., ma, were computed under different loss
functions, by using the equations (3.32), (3.35) and (3.36), respectively. The 95%
lower bound L and upper bound U of PI for the future kth order statistics Yi.myum,
were computed by solving the equations (3.38) and (3.39) with respect to L and U,
respectively. The codes of Mathematica 7 are used for this purpose, see Appendix
[4].
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In Table 5.7, we present the performances of Bayes predictors based on two-sample
prediction problem when Prior 0 and 1 are used, for observed progressive scheme
(30,10,4%5,60), and unobserved progressive scheme (10, 6, 4, 5*0).

In Tables 5.4 and 5.6, the smallest, middle or around, and the largest missing kth

order statistics Yy, (future kth order statistics Yi.n,m,) are only predicted.
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Table 5.1: MLEs and Bayes estimates with respect to different loss functions when

Prior 0 is used, for @« = 2 and A = 1. (progressive data)

Censoring schemes MLE Sq. err. | Abs. err. | a*=0.1] a*=1 a* =5
Bayes 1 | Bayes 2 | Bayes 3 | Bayes 4 | Bayes 5

a || 2.2691 2.1169 2.1283 2.1163 | 2.1157 | 2.1131

Scheme 1 (0.2614) || (0.2377) | (0.2388) | (0.2377) | (0.2378) | (0.2381)
Al 1.2180 1.1778 1.1392 1.1152 1.0633 | 0.8416

(30,10, 4*5, 6*0) (0.3358) || (0.2651) | (0.2457) | (0.2400) | (0.2200) | (0.1450)
a || 2.1858 2.0794 2.0858 2.0792 | 2.0790 | 2.0782

Scheme 2 (0.1926) || (0.1788) | (0.1789) | (0.1788) | (0.1788) | (0.1789)
Al 1.1491 1.1257 1.1025 1.0851 1.0516 | 0.9029

(30, 15,6*0,3*5,6*0) (0.1782) || (0.1519) | (0.1459) | (0.1411) | (0.1324) | (0.0983)
a || 2.1665 2.0585 2.0627 2.0584 | 2.0584 | 2.0580

Scheme 3 (0.1589) || (0.1458) | (0.1461) | (0.1458) | (0.1458) | (0.1458)
Al 1.0785 1.0584 1.0413 1.0301 1.0068 | 0.9033

(30,20, 18*0,2*5) (0.0657) || (0.0561) | (0.0545) | (0.0532) | (0.0508) | (0.0410)
a | 2.1128 2.0334 2.0334 2.0333 | 2.0333 | 2.0332

Scheme 4 (0.1469) || (0.1371) | (0.1371) | (0.1371) | (0.1371) | (0.1371)
Al 1.0458 1.0129 1.0129 0.9998 | 0.9895 | 0.9550

(30,25,24*0,5) (0.0495) || (0.0422) | (0.0401) | (0.0399) | (0.0378) | (0.0361)
a || 2.3112 2.1118 2.1211 2.1114 2.111 2.1091

Scheme 5 (0.3484) || (0.3026) | (0.3028) | (0.3027) | (0.3028) | (0.3032)
Al 1.3746 1.2064 1.1616 1.1390 1.0826 | 0.8380

(40,10, 10*3) (0.8557) || (0.5114) | (0.4591) | (0.4485) | (0.3980) | (0.2127)
a || 2.2001 2.1251 2.1297 2.1250 | 2.1249 | 2.1246

Scheme 6 (0.1598) || (0.1505) | (0.1508) | (0.1505) | (0.1505) | (0.1506)
Al 1.0514 1.0487 1.0318 1.0204 | 0.9970 | 0.8929

(40,20, 10*2,10%0) (0.0690) || (0.0665) | (0.0644) | (0.0629) | (0.0560) | (0.0488)

Note: The first entry represents the average estimate and the second entry is the

MSE.
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Table 5.2: Bayes estimates with respect to different loss functions when Prior 1 is

used, for &« = 2 and A = 1. (progressive data)

Censoring schemes | Sq. err. | Abs. err. | a*=0.1 | a" = a* =
Bayes 1 | Bayes 2 | Bayes 3 | Bayes 4 | Bayes 5
a | 2.0811 2.0912 2.0806 | 2.0802 | 2.0782
Scheme 1 (0.1836) | (0.1834) | (0.1837) | (0.1837) | (0.1840)
Al 1.1293 1.0996 1.0747 | 1.0292 | 0.8339
(30,10, 4*5, 6*0) (0.1728) | (0.1631) | (0.1568) | (0.1444) | (0.1011)
a | 2.0716 2.0716 2.0715 | 2.0715 | 2.0711
Scheme 2 (0.1712) | (0.1711) | (0.1712) | (0.1712) | (0.1713)
Al 1.0822 1.0595 1.0459 1.0159 | 0.8816
(30, 15,6*0,3*5,6*0) (0.1094) | (0.1094) | (0.1053) | (0.1030) | (0.0988)
a | 2.0509 2.0601 2.0511 | 2.0533 | 2.0500
Scheme 3 (0.1222) | (0.1223) | (0.1222) | (0.1222) | (0.1222)
Al 1.0178 1.0019 0.9911 | 0.9692 | 0.8722
(30,20, 18*0,2*5) (0.0391) | (0.0379) | (0.0368) | (0.0351) | (0.0287)
a | 2.0306 2.0335 2.0305 | 2.0305 | 2.0303
Scheme 4 (0.1180) | (0.1181) | (0.1180) | (0.1180) | (0.1180)
A | 1.0485 1.0341 1.0269 1.0091 | 0.9289
(30,25,24*0,5) (0.0323) | (0.0325) | (0.0310) | (0.0299) | (0.0251)
a | 2.0598 2.0676 2.0595 | 2.0592 | 2.0578
Scheme 5 (0.2026) | (0.2026) | (0.2026) | (0.2027) | (0.2029)
A | 1.1886 1.1500 | 1.12920 | 1.0800 | 0.8693
(40,10, 10*3) (0.1881) | (0.1736) | (0.1692) | (0.1543) | (0.0999)
a | 2.0424 2.0466 2.0423 | 2.0422 | 2.0419
Scheme 6 (0.1275) | (0.1274) | (0.1275) | (0.1275) | (0.1275)
A | 1.0866 1.0696 1.0584 | 1.0351 | 0.9318
(40,20, 10*2,10%0) (0.0563) | (0.0558) | (0.0537) | (0.0516) | (0.0441)
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Table 5.3: Average credible interval lengths (A.L) and coverage percentages (C.P).

(progressive data)

Prior 0 Prior 1

Schemes AL C.P AL C.P
Scheme 1 o | 1.8146 0.94 | 1.5742 0.96
(30,10,4*5,6*0) A | 2.1901 0.93 | 1.7882 0.93
Scheme 2 o | 1.6437 0.93 | 1.4718 0.94
(30,15,6*0,3*5,6*0) A | 1.6808 0.96 | 1.5166 0.94
Scheme 3 o | 1.5450 0.94 | 1.4227 0.94
(30,20, 18*0, 2*5) A | 1.3090 0.94 | 1.2033 0.94
Scheme 4 « | 1.3954 0.94 | 1.2806 0.94
(30, 25,24*0, 5) A | 1.1741 0.94 | 1.1022 0.95
Scheme 5 o | 2.3486 0.94 | 1.6960 0.93
(40,10, 10*3) A | 3.6185 0.94 | 1.8811 0.96
Scheme 6 « | 1.3199 0.96 | 1.3561 0.93
(40,20, 10*2,10*0) M| 1.3678 0.94 | 1.2693 0.95
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Comments and Observations
From the previous tables, we may observe the following remarks:

(1) From Table 5.1 and the simulated values for the MLEs, it is clear that as m
increases the performances of MLEs of a and A become better in terms of biases
and MSEs.

(2) From Table 5.1, we observe that the Bayes estimates of a and A obtained by
using Prior 0 and with respect to different loss functions Ly, Lo and L3, are quite
close to each other and perform much better than the MLEs of o and A in terms of

biases and MSEs for all schemes considered.

(3) It is observed that from Table 5.1 most of the different Bayes estimates 1-5
usually overestimate o and A, except Bayes estimate 5 which underestimate o and
A. One can also observe that for each Bayes estimate, the biases and MSEs decrease
as the progressive sample size m increases and for fixed the sample size n in the
most schemes considered. But for fixed m as n increases the performance of Bayes
estimates 1-5 becomes worse in terms of biases and MSEs in the most of schemes

considered.

(4) If we compare the results in Table 5.2 by the results in Table 5.1, it observed
that the Bayes estimates of a and A obtained by using Prior 1 (informative prior)
perform much better than the Bayes estimates of o and A obtained by using Prior
0 (non-informative prior) in terms of the biases and MSEs in the most of schemes
considered. Also we notice that the Bayes estimates obtained by using Prior 1 per-

form much better than the MLEs of o and A in all schemes considered.

(5) From Tables 5.3, we observe that the average length of the credible intervals
for a« and A, when Prior 1 is used, becomes smaller as expected, and decreases as
m increases. For both Prior 0 and 1, the simulated probabilities for 0.95 are quite
close to 0.95.
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Table 5.4: Point predictors and PIs for missing kth order statistics Yj.,,k =

1,...,7;,7 = 1,...,m, based on one-sample prediction problem.

Schemes Yir, Loss function Predicted 95%PIs
values

(30,10,4*5,60) | Y1.p, Sq. err. 0.4363 | (0.2150,0.8323)
Ab. err. 0.4059 (0.2139,0.7673)
LINEX (a* =0.1) 0.4048 (0.2150,0.7744)
LINEX (a* = 0.5) 0.3941 (0.2150, 0.7550)
LINEX (a* = 1.0) 0.3816 (0.2150,0.7328)
Y., Sq. err. 0.7925 (0.4136, 1.3110)
Ab. err. 0.7686 (0.4103,1.2390)
LINEX (a* =0.1) 0.7565 (0.4131,1.1670)
LINEX (a* = 0.5) 0.7435 (0.4130, 1.1260)
LINEX (a* = 1.0) 0.7272 (0.4128,1.0790)
Y5, Sq. err. 1.2740 (0.7145,2.0560)
Ab. err. 1.2350 (0.7571, 1.8980)
LINEX (a* =0.1) 1.2240 (0.7131, 1.8340)
LINEX (a* = 0.5) 1.2070 (0.7126, 1.7650)
LINEX (a* = 1.0) 1.1850 (0.7120, 1.6890)
Y, Sq. err. 0.4722 (0.2841,0.8448)
Ab. err. 0.4393 (0.2858,0.9871)
LINEX (a* =0.1) 0.4487 (0.2841,0.7847)
LINEX (a* = 0.5) 0.4410 (0.2841,0.7657)
LINEX (a* = 1.0) 0.4319 (0.2841,0.7444)
Y3, Sq. err. 0.8075 | (0.4454,1.3170)
Ab. err. 0.7820 (0.4253,1.0920)
LINEX (a* =0.1) 0.7744 (0.4449, 1.1650)
LINEX (a* = 0.5) 0.7626 (0.4447,1.1150)
LINEX (a* = 1.0) 0.7479 (0.4445,1.0620)
Ys.r, Sq. err. 1.2830 | (0.7322,2.0560)
Ab. err. 1.2440 (0.7831,1.9340)
LINEX (a* =0.1) 1.2350 (0.7308, 1.8370)
LINEX (a* = 0.5) 1.2180 (0.7303, 1.7650)
LINEX (a* = 1.0) 1.1970 (0.7296, 1.6860)
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Schemes | Y., Loss function Predicted 95%PIs
values

DEP Sq. err. 0.4887 (0.3125,0.8496)
Ab. err. 0.4555 (0.3128,0.8271)

LINEX (a* =0.1) 0.4679 (0.3124,0.7898)
LINEX (a* = 0.5) 0.4611 (0.3124,0.7706)
LINEX (a* = 1.0) 0.4531 (0.3124, 0.7482)

Y30, Sq. err. 0.8274 (0.4677,1.3360)
Ab. err. 0.8017 (0.4345,1.0430)

LINEX (a* =0.1) 0.7954 (0.4672,1.1900)
LINEX (a* = 0.5) 0.7840 (0.4670, 1.1350)
LINEX (a* = 1.0) 0.7699 (0.4668, 1.0580)

Y5 Sq. err. 1.2750 (0.7355,2.0340)
Ab. err. 1.2360 | (0.7312,1.7710)

LINEX (a* =0.1) 1.2290 (0.7340, 1.8230)
LINEX (a* = 0.5) 1.2120 (0.7334, 1.7480)
LINEX (a* = 1.0) 1.1920 (0.7327,1.6470)

Yior, Sq. err. 0.5591 (0.4105,0.8934)
Ab. err. 0.5254 (0.4104,0.8316)

LINEX (a* =0.1) 0.5445 (0.4105, 0.8321)
LINEX (a* = 0.5) 0.5397 (0.4105, 0.8127)
LINEX (a* = 1.0) 0.5341 (0.4105,0.7907)

Yi.r, Sq. err. 0.8497 (0.5285,1.3280)
Ab. err. 0.8225 (0.4933,1.0100)

LINEX (a* =0.1) 0.8236 (0.5281,1.1890)
LINEX (a* = 0.5) 0.8144 (0.5280, 1.1480)
LINEX (a* = 1.0) 0.8033 (0.5278,1.1040)

Y5, Sq. err. 1.3050 (0.7769,2.0690)
Ab. err. 1.2640 (0.8537,2.1080)

LINEX (a* =0.1) 1.2610 (0.7756, 1.8440)
LINEX (a* = 0.5) 1.2450 (0.7752,1.7760)
LINEX (a* = 1.0) 1.2260 (0.7746,1.7040)
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Schemes Yier; Loss function Predicted 95%PIs
values

(30,15,6%0,3*5,60) | Y1.p, Sq. err. 0.9321 (0.7721,1.2975)
Ab. err. 0.8943 (0.7729,1.3395)
LINEX (¢* =0.1) | 0.9213 | (0.7721,1.2490)
LINEX (a* = 0.5) 0.9177 (0.7721, 1.2320)
LINEX (a* =1.0) | 09134 | (0.7721,1.2112)
Y3, Sq. err. 1.2661 (0.9025, 1.7865)
Ab. err. 1.2388 (0.9106, 1.7292)
LINEX (a* =0.1) 1.2443 (0.9022, 1.6780)
LINEX (a* = 0.5) 1.2366 (0.9021, 1.6399)
LINEX (a* = 1.0) 1.2272 (0.9020, 1.5880)
Y5 Sq. err. 1.7729 (1.1870,2.5739)
Ab. err. 1.7353 (1.1260, 2.3966)
LINEX (a* =0.1) 1.7349 (1.1860, 2.4036)
LINEX (a,* = 0.5) 1.7214 (1.1850, 2.3469)
LINEX (a* = 1.0) 1.7047 (1.1850, 2.2809)
Vi Sq. err. 0.9563 (0.8028, 1.3122)
Ab. err. 0.9191 | (0.8027,1.2613)
LINEX (a* =0.1) 0.9464 (0.8028, 1.2645)
LINEX (a* = 0.5) 0.9431 (0.8028, 1.2486)
LINEX (a* = 1.0) 0.9391 (0.8028,1.2298)
Y3 Sq. err. 1.2842 (0.9270, 1.8051)
Ab. err. 1.2557 | (0.9094, 1.6219)
LINEX (a* =0.1) 1.2631 (0.9268, 1.6886)
LINEX (a* = 0.5) 1.2556 (0.9267,1.6506)
LINEX (a* = 1.0) 1.2465 (0.9265, 1.6075)
Ys.re Sq. err. 1.7954 | (1.2100,2.5958)
Ab. err. 1.7577 (1.2560, 2.5369)
LINEX (a* =0.1) 1.7580 (1.2090, 2.4310)
LINEX (a* = 0.5) 1.7447 (1.2090, 2.3740)
LINEX (a* = 1.0) 1.7283 (1.2080, 2.2965)
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Schemes Yir; Loss function Predicted 95%PIs
values

Yiirg Sq. err. 0.9845 (0.8382,1.3282)
Ab. err. 0.9482 (0.8387,1.3375)
LINEX (a* =0.1) 0.9756 (0.8382,1.2821)
LINEX (a* = 0.5) 0.9726 (0.8382,1.2658)
LINEX (a* = 1.0) 0.9690 (0.8382,1.2456)
Ys.r, Sq. err. 1.3019 (0.9567,1.8017)
Ab. err. 1.2748 (().9846, 1.9012)
LINEX (a* =0.1) 1.2825 (0.9565, 1.7041)
LINEX (a* = 0.5) 1.2756 (0.9564, 1.6677)
LINEX (a* = 1.0) 1.2673 (0.9563, 1.6229)
Ys.ro Sq. err. 1.7952 (1.2220, 2.5947)
Ab. err. 1.7556 | (1.1440,2.2186)
LINEX (a* =0.1) 1.7586 (1.2210,2.4160)
LINEX (a* = 0.5) 1.7456 (1.2200, 2.3600)
LINEX (a* = 1.0) 1.7297 (1.2200, 2.2961)
(30,20,18%0,2*5) | Y1 Sq. err. 1.1079 | (1.0030,1.3862)
Ab. err. 1.0766 (1.0028, 1.3364)
LINEX (a* =0.1) 1.1030 (1.0030, 1.3543)
LINEX (¢* =0.5) | 1.1014 | (1.0030,1.3440)
LINEX (a* = 1.0) 1.0994 (1.0030, 1.3322)
Y300 Sq. err. 1.3780 (1.0836, 1.8705)
Ab. err. 1.3430 (1.0803, 1.7529)
LINEX (a* =0.1) 1.3623 (1.0835,1.7878)
LINEX (a* = 0.5) 1.3569 (1.0835, 1.7600)
LINEX (a* = 1.0) 1.3503 (1.0834,1.7279)
Y510 Sq. err. 1.9163 | (1.3061,2.8734)
Ab. err. 1.8553 (1.3626,2.9124)
LINEX (a* =0.1) 1.8724 (1.3053,2.6926)
LINEX (a* = 0.5) 1.8572 (1.3050,2.6273)
LINEX (a* = 1.0) 1.8387 (1.3046,2.5498)
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Schemes Yier, Loss function Predicted 95%PIs
values

Yiirao Sq. err. 1.2521 (1.1580, 1.5061)
Ab. err. 1.2233 (1.1588,1.5812)
LINEX (a* =0.1) 1.2485 (1.1580,1.4769)
LINEX (a* = 0.5) 1.2472 (1.1580, 1.4669)
LINEX (a* = 1.()) 1.2457 (1.15807 1.4551)
Yirag Sq. err. 1.4992 | (1.2291,1.9647)
Ab. err. 1.4648 (1.2423, 1.9810)
LINEX (a* =0.1) 1.4866 (1.2289, 1.8818)
LINEX (a* = 0.5) 1.4822 (1.2289, 1.8527)
LINEX (a* = 1.0) 1.4768 (1.2288,1.8167)
Y590 Sq. err. 1.9996 (1.4287,2.9159)
Ab. err. 1.9389 | (1.4380,2.7437)
LINEX (a* =0.1) 1.9618 (1.4281,2.7453)
LINEX (a* = 0.5) 1.9487 (1.4278,2.6864)
LINEX (a* = 1.()) 1.9328 (1.4275,2.6157)
(30,25,2470,5) | Yiipos Sq. err. 1.0625 | (1.0035,1.2228)
Ab. err. 1.0443 (1.00347 1.1982)
LINEX (a* =0.1) 1.0608 (1.0035, 1.2073)
LINEX (a* = 0.5) 1.0602 (1.0035, 1.2022)
LINEX (a* = 1.0) 1.0594 (1.0035,1.1961)
Yiiras Sq. err. 1.2200 | (1.0481,1.5180)
Ab. err. 1.1977 (1.0504, 1.5661)
LINEX (a* =0.1) 1.2136 (1.0480,1.4737)
LINEX (a* = 0.5) 1.2113 (1.0480, 1.4585)
LINEX (a* = 1.0) 1.2086 (1.0480, 1.4408)
Vv Sq. err. 1.5562 | (1.1791, 2.1660)
Ab. err. 1.5153 (1.1943,2.2201)
LINEX (a* =0.1) 1.5347 (1.1788,2.0703)
LINEX (a* = 0.5) 1.5272 (1.1787,2.0393)
LINEX (a* = 1.0) 1.5182 (1.1785,2.0031)
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Schemes Yir; Loss function Predicted 95%PIs
values

(40,10,10*3) | Y., Sq. err. 0.5961 | (0.2995,1.0293)
Ab. err. 0.5739 (0.3006, 0.9930)
LINEX (a* =0.1) 0.5622 (0.2995,0.9711)
LINEX (a* = 0.5) 0.5501 (0.2995, 0.9523)
LINEX (a* = 1.0) 0.5355 (0.2994, 0.9316)
Y3, Sq. err. 1.1020 (0.6388,1.6773)
Ab. err. 1.0820 (0.5868,1.5104)
LINEX (a* =0.1) 1.0670 (0.6382,1.5494)
LINEX (a* = 0.5) 1.0540 (0.6380, 1.5072)
LINEX (a* = 1.0) 1.0370 (0.6377,1.4588)
Y1 Sq. err. 0.7103 (0.5214,1.0773)
Ab. err. 0.6782 (0.5215,1.0380)
LINEX (a* =0.1) 0.6943 (0.5214,1.0189)
LINEX (a* = 0.5) 0.6890 (0.5214, 1.0002)
LINEX (a* = 1.0) 0.6825 (0.5213,0.9783)
Y30 Sq. err. 1.1400 (0.7243,1.6870)
Ab. err. 1.1170 | (0.7262,1.6236)
LINEX (a* =0.1) 1.1110 (0.7238,1.5661)
LINEX (a* = 0.5) 1.1000 (0.7236,1.5218)
LINEX (a* = 1.0) 1.0880 (0.7233,1.4646)
Y1 Sq. err. 0.8944 (0.7769,1.1735)
Ab. err. 0.8649 (0.7772,1.2003)
LINEX (a* =0.1) 0.8880 (0.7769,1.1217)
LINEX (a* = 0.5) 0.8858 (0.7769, 1.1046)
LINEX (a* = 1.0) 0.8831 (0.7769, 1.0843)
Y310 Sq. err. 1.2340 (0.8946, 1.7409)
Ab. err. 1.2050 (0.9035, 1.6428)
LINEX (a* =0.1) 1.2140 (0.8942,1.6170)
LINEX (a* = 0.5) 1.2070 (0.8941,1.5770)
LINEX (a* = 1.0) 1.1980 (0.8939, 1.5313)
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Schemes Yir; Loss function Predicted 95%PIs
values

(40,20,10*2,10°0) | Yi., Sq. err. 0.6663 | (0.2116,1.4672)
Ab. err. 0.6062 (0.2150,1.5160)
LINEX (a* =0.1) 0.5791 (0.2116,1.3949)
LINEX (a* = 0.5) 0.5490 (0.2116, 1.3711)
LINEX (a* = 1.0) 0.5135 (0.2116, 1.3424)
Your, Sq. err. 1.1970 | (0.4315,2.3160)
Ab. err. 1.1350 (0.4346, 2.3537)
LINEX (a* =0.1) 1.0880 (0.4313,2.1809)
LINEX (a* = 0.5) 1.0470 (0.4312, 2.1334)
LINEX (a* = 1.0) 0.9964 (0.4311,2.0745)
Y Sq. err. 0.7196 (0.3206, 1.4823)
Ab. err. 0.6551 (0.3201,1.4058)
LINEX (a* =0.1) 0.6531 (0.3206, 1.4130)
LINEX (a* = 0.5) 0.6311 (0.3206, 1.3883)
LINEX (a* = 1.0) 0.6055 (0.3206, 1.3585)
Yors Sq. err. 1.2360 (0.5001, 2.3489)
Ab. err. 1.1710 (0.4962,2.1681)
LINEX (a* = 0.1) 1.1370 (0.4999, 2.2070)
LINEX (a* = 0.5) 1.1010 (0.4998,2.1597)
LINEX (a* = 1.0) 1.0570 (0.4997,2.1046)
Y1 Sq. err. 0.9344 (0.6336, 1.6072)
Ab. err. 0.8665 (0.6323,1.4567)
LINEX (a* =0.1) 0.8994 (0.6335,1.5394)
LINEX (a* = 0.5) 0.8881 (0.6335,1.5159)
LINEX (a* = 1.0) 0.8748 (0.6335, 1.4872)
Yoo Sq. err. 1.3750 (0.7469,2.4133)
Ab. err. 1.3040 (0.7585,2.4078)
LINEX (a* = 0.1) 1.3050 (0.7467,2.2797)
LINEX (a* = 0.5) 1.2810 (0.7467,2.2331)
LINEX (a* = 1.0) 1.2530 (0.7466,2.1781)
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Schemes Yier; Loss function Predicted 95%PIs
values

(40,30,14*0,10,15*0) | Y1.5 Sq. err. 0.6705 | (0.6103,0.8245)
Ab. err. 0.6535 (0.6102,0.8054)
LINEX (a* =0.1) 0.6680 (0.6103,0.8125)
LINEX (a* = 0.5) 0.6671 (0.6103,0.8084)
LINEX (a* = 1.0) 0.6661 (0.6103,0.8036)
Yo, Sq. err. 0.7336 (0.6253,0.9312)
Ab. err. 0.7176 (0.6249,0.9044)
LINEX (a* =0.1) 0.7290 (0.6253,0.9108)
LINEX (a* = 0.5) 0.7274 (0.6253,0.9038)
LINEX (a* = 1.0) 0.7254 (0.6253,0.8957)
Ys.rs Sq. err. 0.9334 (0.7285,1.2166)
Ab. err. 0.9196 (0.7422,1.2134)
LINEX (a* =0.1) 0.9243 (0.7283,1.1707)
LINEX (a* = 0.5) 0.9211 (0.7282, 1. 1540)
LINEX (a* = 1.0) 0.9172 (0.7281,1.1345)
Yours Sq. err. 1.0130 (0.7780, 1.3305)
Ab. err. 0.9992 (0.7837,1.2983)
LINEX (a* =0.1) 1.0030 (0.7777,1.2728)
LINEX (a* = 0.5) 0.9991 (0.7776,1.2539)
LINEX (a* = 1.0) 0.9944 (0.7775,1.2329)
Yours Sq. err. 1.3440 (0.9839, 1.8189)
Ab. err. 1.3240 | (1.0650, 1.9212)
LINEX (a* =0.1) 1.3260 (0.9832,1.7292)
LINEX (a* = 0.5) 1.3190 (0.9829,1.6991)
LINEX (a* = 1.0) 1.3110 (0.9826, 1.6644)
Y105 Sq. err. 1.5740 | (1.1030,2.2323)
Ab. err. 1.5410 | (1.2060, 2.4523)
LINEX (a* =0.1) 1.5460 (1.1020, 2.1185)
LINEX (a* = 0.5) 1.5360 (1.1020,2.0823)
LINEX (¢* = 1.0) | 15240 | (1.1020,2.0414)
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Table 5.5: Average values and MSEs of the predictors of missing values based on
one-sample prediction problem for scheme (15,10,5*0,5,4%0).

Prior 0 Prior 1
Yir, Loss function Average predicted | MSE | Average predicted | MSE
values values

Y Sq. err. 0.8354 0.0206 0.7681 0.0171
Ab. err. 0.7973 0.0205 0.7347 0.0176

LINEX (a* =0.1) 0.8254 0.0209 0.7593 0.0176
LINEX (a* = 0.5) 0.8221 0.0210 0.7564 0.0178
LINEX (a* = 1.0) 0.8183 0.0211 0.7531 0.0180

Youre Sq. err. 1.0120 0.0256 0.9547 0.0175
Ab. err. 0.9600 0.0230 0.9154 0.0161

LINEX (a* =0.1) 0.9922 0.0254 0.9360 0.0169
LINEX (a* = 0.5) 0.9856 0.0253 0.9298 0.0168
LINEX (a* = 1.0) 0.9778 0.0253 0.9223 0.0167

Y. Sq. err. 1.1190 0.0413 1.1000 0.0298
Ab. err. 1.0790 0.0362 1.0570 0.0271

LINEX (a* =0.1) 1.0930 0.0375 1.0710 0.0286
LINEX (a* = 0.5) 1.0850 0.0363 1.0620 0.0284
LINEX (a* = 1.0) 1.0740 0.0351 1.0500 0.0281

Yiorg Sq. err. 1.3630 0.0722 1.3530 0.0544
Ab. err. 1.3050 0.0566 1.3000 0.0467

LINEX (a* =0.1) 1.3180 0.0589 1.3120 0.0490
LINEX (a* = 0.5) 1.3030 0.0551 1.2980 0.0474
LINEX (a* = 1.0) 1.2840 0.0509 1.2820 0.0457

Ys.r Sq. err. 1.6470 0.1725 1.7100 0.1144
Ab. err. 1.5720 0.1349 1.6320 0.0946

LINEX (a* =0.1) 1.5830 0.1381 1.6410 0.0968
LINEX (a* = 0.5) 1.5620 0.1280 1.6180 0.0916
LINEX (a* = 1.0) 1.5360 0.1167 1.5900 0.0858
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Table 5.6: Point predictors and Pls for future kth order statistics Yiimgm,, k
1,...,mq, based on another independent observed sample {Z;.,m,,% = 1,...,m1}.

Deposit

7))
Schemes of Schemes of Loss function Predicted 95%PIs g
observed future (- values =
sample sample 5
Yi.6:10 Sq. err. 0.2768 | (0.0575,0.5917) )
Ab. err. 0.2605 (0.0658,0.6253) '%‘
(30,10, 4*5,6%0) (10,6,4,50) LINEX (a* =0.1) | 0.2341 | (0.0591,0.5937) O
LINEX (a* = 0.5) 0.2157 | (0.0597,0.5945) [,
LINEX (a* = 1.0) 0.1839 | (0.0605,0.5955) %
Y3.6:10 Sq. err. 0.6446 | (0.3038,1.1016) &=
Ab. err. 0.6244 | (0.3519,1.1374) ’g
LINEX (a* =0.1) 0.6089 | (0.3224,1.1087) ©
LINEX (a* = 0.5) 0.5956 | (0.3304,1.1115) >
LINEX (a* = 1.0) 0.5788 | (0.3419,1.1152) %
Y5.6:10 Sq. err. 1.2680 | (0.7110,2.0527) >
Ab. err. 1.2282 | (0.8323,2.0978) g
LINEX (a* =0.1) 1.2186 | (0.7753,2.0689) I—
LINEX (a* = 0.5) 1.2008 | (0.8074,2.0755) @
LINEX (a* = 1.0) | 11789 | (0.8604,2.0846) &
Y].8:20 Sq. err. 0.2914 | (0.0767,0.5625) _.§
Ab. err. 0.2819 | (0.0758,0.5339)
(30,15,6*0,3*5,6*0) | (20,8,3%0,2%4,3%0) LINEX (a*=0.1) | 0.2572 | (0.0778,0.5634) .
LINEX (a* = 0.5) 0.2425 (0.0782,0.5638) §
LINEX (a* = 1.0) 0.2213 | (0.0787,0.5642) %
Y).8:20 Sq. err. 0.5650 | (0.3365,0.8345) Y
Ab. err. 0.5579 | (0.3366,0.7775) |
LINEX (a* =0.1) 0.5491 (0.3510,0.8373) I
LINEX (a* = 0.5) 0.5431 (0.3570,0.8384) =2
LINEX (a* = 1.0) 0.5356 | (0.3649,0.8397) D_:
Yi.8:20 Sq. err. 1.3800 | (0.8407,2.0930) &
Ab. err. 1.3500 | (0.8415,1.9550)
LINEX (a* =0.1) 1.3400 | (0.8857,2.0990)
LINEX (a* =0.5) 1.3250 | (0.9054,2.1010)
LINEX (a* = 1.0) 1.3070 | (0.9319,2.1040)
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Schemes of Schemes of Loss function Predicted 95%PIs
observed future Yimams values
sample sample
Yi:10:20 Sq. err. 0.1944 (0.0366, 0.4221)
Ab. err. 0.1823 (0.0397,0.4408)
(30,20, 18*0,2*5) | (20,10, 8%0,2*5) LINEX(a* = 0.1) 0.1619 (0.0371,0.4227)
LINEX (a* = 0.5) 0.1477 (0.0373,0.4229)
LINEX (a* = 1.0) 0.1266 (0.0375,0.4232)
Y5.10:20 Sq. err. 0.4911 (0.2804, 0.7487)
Ab. err. 0.4829 (0.3094, 0.7650)
LINEX (a* =0.1) 0.4749 (0.2930,0.7511)
LINEX (a* = 0.5) 0.4689 (0.2981,0.7520)
LINEX (a* = 1.0) 0.4612 (0.3048,0.7532)
}/10:10:20 Sq eIr. 0.7963 (05247, 11380)
Ab. err. 0.7841 (0.5852,1.1530)
LINEX (a* =0.1) 0.7796 (0.5601, 1.1430)
LINEX (a* = 0.5) 0.7735 (0.5755,1.1450)
LINEX (a* = 1.0) 0.7659 (0.5968, 1.1470)
Yi:15:20 Sq. err. 0.2994 (0.0890, 0.5457)
Ab. err. 0.2935 (0.0956, 0.5727)
(30,25,24*0,5) | (20,15,14%0,5) LINEX(a* = 0.1) 0.2697 | (0.0897,0.5462)
LINEX (a* = 0.5) 0.2569 (0.0899, 0.5463)
LINEX (a* = 1.0) 0.2386 (0.0902, 0.5465)
Y3:15:20 Sq. err. 0.7547 | (0.5484,0.9850)
Ab. err. 0.7506 (0.5984,1.0130)
LINEX (a* =0.1) 0.7456 (0.5678,0.9875)
LINEX (a* = 0.5) 0.7423 (0.5760,0.9884)
LINEX (a* = 1.0) 0.7381 (0.5871,0.9897)
}/15;15;20 Sq erIr. 1.0790 (08387, 13540)
Ab. err. 1.0720 (0.9221, 1.3830)
LINEX (a* =0.1) 1.0700 (0.8804, 1.3590)
LINEX (a* = 0.5) 1.0670 (0.8996, 1.3610)
LINEX (a* = 1.0) 1.0630 (0.9263, 1.3640)
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Table 5.7: Average values and MSEs of the predictors of future values based on
two-sample prediction problem for observed progressive scheme (30, 10,4*5,6*0) and
future progressive scheme (10, 6,4, 50).

Prior 0 Prior 1
Yimans Loss function Average predicted | MSE | Average predicted | MSE
values values

Yi.6:10 Sq. err. 0.2950 0.0055 0.2898 0.0039
Ab. err. 0.2677 0.0090 0.2686 0.0044

LINEX (a* = 0.1) 0.2443 0.0062 0.2396 0.0041

LINEX (a* = 0.5) 0.2225 0.0066 0.2180 0.0043

LINEX (a* = 1.0) 0.1901 0.0074 0.1862 0.0047

Y2.6:10 Sq. err. 0.5272 0.0089 0.5241 0.0079
Ab. err. 0.4979 0.0089 0.4962 0.0083

LINEX (a* =0.1) 0.4751 0.0086 0.4729 0.0081

LINEX (a* = 0.5) 0.4554 0.0086 0.4534 0.0083

LINEX (a* = 1.0) 0.4296 0.0088 0.4279 0.0087

Y3.6:10 Sq. err. 0.7303 0.0148 0.7153 0.0119
Ab. err. 0.6995 0.0149 0.6857 0.0115

LINEX (a* =0.1) 0.6805 0.0146 0.6659 0.0112

LINEX (a* = 0.5) 0.6621 0.0147 0.6476 0.0110

LINEX (a* = 1.0) 0.6387 0.0149 0.6243 0.0109

Yi6:10 Sq. err. 0.9187 0.0275 0.9313 0.0200
Ab. err. 0.8796 0.0254 0.8947 0.0182

LINEX (a* =0.1) 0.8610 0.0244 0.8765 0.0176

LINEX (a* = 0.5) 0.8400 0.0236 0.8565 0.0169

LINEX (a* = 1.0) 0.8137 0.0227 0.8314 0.0163

Y5.6:10 Sq. err. 1.1850 0.0437 1.1390 0.0293
Ab. err. 1.1390 0.0366 1.0960 0.0253

LINEX (a* =0.1) 1.1240 0.0350 1.0810 0.0243

LINEX (a* = 0.5) 1.1020 0.0325 1.0600 0.0229

LINEX (a* = 1.0) 1.0750 0.0298 1.0340 0.0214

Ys.6:10 Sq. err. 1.6050 0.1081 1.5480 0.0722
Ab. err. 1.5290 0.0895 1.4800 0.0575

LINEX (a* =0.1) 1.5140 0.0860 1.4640 0.0552

LINEX (a* = 0.5) 1.4830 0.0793 1.4350 0.0501

LINEX (a* = 1.0) 1.4430 0.0718 1.3990 0.0444
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Comments and observations
From Tables 5.4-5.7, we may observe the following remarks:

(1) It is observed that from Table 5.4, the predicted values for the missing kth
order statistics Yj.,, based on different loss functions Ly, Ly and L3z, and at any
censoring stage, are quite close to each other and fall in their corresponding 95%

PIs for all schemes considered in the table.

(2) It is observed that from Tables 5.5 and 5.7, the performances of the Bayes
predictors for the missing (future) order statistics when Prior 1 is used, are better

than the performances of the Bayes predictors when Prior 0 is used.

(3) From Table 5.6, we notice that the behavior of the predicted values for the fu-
ture kth order statistics Y.m,.n, based on different loss functions and for all schemes

considered in the table, are similar to the predicted values in Table 5.4.
Example 1: (real data)

In this example we analyze the time (in minutes) to breakdown of an insulating
fluid between electrodes at voltage 30kv. This data is taken from Nelson (1982,
Table 6.1, p.228). The complete data set consist of n = 11 times to breakdown.

The progressively censored data we used is as follows:

i 1 2 3 4 ) 6 7 8
T 0 0 0 0 3 0 0 0
yi | 2.0464 | 2.8361 | 3.0184 | 3.0454 | 3.1206 | 4.9706 | 5.1698 | 5.2724

Before we analyze the data, we have subtracted 1.75 from each data point. After
subtracting 1.75 from each data point, we have computed the maximum likelihood
estimators of a and A and they are 2.0239 and 0.1802, respectively. The correspond-
ing Kolmogorov-Smirnov (KS) distance becomes 0.1656 and the associated p-value
is 0.9149. Therefore the KS indicates that the Weibull distribution can be used to

analyze this data.

Now we compute the Bayes estimates with respect to different loss function de-
scribed in subsection [1.3.1], namely squared error (Sq. err.), absolute error (Ab.
err.) and LINEX function with different choices of a* : 0.1,1.0,5.0. The results are

presented in Table 5.8. All the estimates are quite close to each other.
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We obtain the 95% credible intervals of o and A and they are (1.5571,1.7324) and
(0.0986, 0.4246), respectively. It is observed that all Bayes estimates of o and \ are

falling in their corresponding credible intervals.

Also, we consider the prediction of the 1, 2" and 3" order statistics in stage b5,
which are missing. The predicted values and the 95% PI of the 1%, 2"¢ and 3"¢ order
statistics are presented in Table 5.9. It is observed that all predicted values, with

respect to different loss functions, are all ordered and fall in their corresponding

predictive intervals.

Table 5.8: Bayes estimates with respect to different loss functions for the data in

example 1.
Sq. err. || Abs. err. | ¢*=0.1]a*=10| a*=5
Bayes 1 Bayes 2 | Bayes 3 | Bayes 4 | Bayes 5
a || 1.6779 1.6897 1.6771 1.6764 1.673
A || 0.23286 || 0.22354 | 0.21677 | 0.20328 | 0.14342

Table 5.9: Point predictors and 95% PlIs for the missing data in example 1

Scheme Yiur, Loss function Predicted 95%PIs
values
(11,8,470,3,3%0) | Vi, Sq. err. 3.782 | (3.143,5.189)
Ab. err. 3.644 | (3.159,5.498)
LINEX (a* =0.1) | 3.741 | (3.143,4.801)
LINEX (a* = 0.5) | 3.728 | (3.143,4.709)
LINEX (a* = 1.0) | 3.711 | (3.143,4.622)
Yo, Sq. err. 4.401 (3.343,6.043)
Ab. err. 4300 | (3.396,5.948)
LINEX (a* =0.1) | 4342 | (3.342,5.532)
LINEX (a* =0.5) | 4.321 | (3.342,5.391)
LINEX (a* = 1.0) | 4296 | (3.342,5.258)
Vi, Sq. err. 5.201 | (3.751,7.245)
Ab. err. 5.009 | (3.874,7.362)
LINEX (a* =0.1) 5.120 (3.749,6.589)
LINEX (a* = 0.5) | 5.001 | (3.748,6.414)
LINEX (a* = 1.0) | 5.055 | (3.747,6.240)
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We can estimate the density function of a and A by fitting the curve on the
histogram of MCMC samples {«;,i = 1,..., M} and {)\;;i = 1,..., M} generated by
Algorithm 1, respectively. Based on M = 10000 replications of generation for o and

A, the estimate density functions of a and A are shown in the following figures:

400 4

200 4

200 4

density function

100

Figure 5.1: Estimate of the density function for «, based on
the progressive data in example 1.
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density function

100 4

Figure 5.2: Estimate of the density function for A, based on
the progressive data in example 1.
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5.2 Results Based on Record Data

In this section we present the results of MLEs and Bayes estimators for a and A
when the shape parameter « is unknown as well as the results of prediction in one-
sample and two-sample prediction problems. These results are reported in Tables

5.10-5.16, for the following cases of sample sizes:

Case 1: n =06
Case 2: n =09
Case 3: n =12
Case 4: n =15

In Table 5.10, we present the MLEs of  and A as well as the Bayes estimates
of @ and A, under the different loss functions used in previous section, when Prior 0
is used. The MLE of the shape parameter o of Weibull distribution was computed
by solving Eq.(4.4). The MLE of the scale parameter A of Weibull distribution was
computed by using Eq.(4.5). Based on different loss functions L, Ly and Lg, the
Bayes estimates and their corresponding MSEs for the shape parameter o and the
scale parameter A of Weibull distribution, were computed by using the equations
given in steps 4-6 of Algorithm 1. The MSEs were computed based on M = 1000
replications. The codes of Mathematica 7 are used for this purpose which appear in
Appendix [5].

In Table 5.11, we present the Bayes estimates of o and A, under the different loss

functions, when Prior 1 is used.

In Table 5.12, we show numerical comparisons between the average lengths of the

credible intervals of o and A when Prior 0 and 1 are used for all cases considered.

In Table 5.13, we present the point predictors and Pls for the future nth record
Xvmy, 1 <m < n, based on observed record sample of size m, for all cases described
above and for all different loss functions L;, L, and Ls with different choices of
a*:0.1,0.5,1.0. Based on MCMC samples {(a;, \;),7 = 1,2, ..., M} and M = 1000,
the predicted values for the future nth record Xy (,), 1 < m < n, were computed
under different loss functions, by using the equations (4.15), (4.18) and (4.19), re-

spectively.
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The 95% lower bound L and upper bound U of the prediction interval for the future
nth record were computed by solving the equations (4.24) and (4.25) with respect
to L and U, respectively. In this table the first five future nth records after the last
observed record are only predicted. The codes of Mathematica 7 are used for this

purpose, see Appendix [6].

In Table 5.14, we present the performances of one-sample Bayes predictors when

Prior 0 and 1 are used for some cases of m.

In Table 5.15, we present the point predictors and Pls for the unobserved kth
record Yym),k = 1,...,n, based on observed record sample of size m, and for
all different loss functions used in previous Tables. Based on MCMC samples
{(as, Ni),i=1,2,...., M} and M = 1000, the predicted values for the unobserved kth
record Yy (), were computed under different loss functions, by using the equations
(4.28), (4.33) and (4.34), respectively. The 95% lower bound L and upper bound
U of the prediction interval for the unobserved kth record Yy () were computed by
solving the equations (4.36) and (4.37) with respect to L and U, respectively. In
this table the smallest, middle or around, and the largest unobserved kth record
Yu(x) are only predicted. The codes of Mathematica 7 are used for this purpose, see
Appendix [7].

In Table 5.16, we present the performances of two-sample Bayes predictors when

Prior 0 and 1 are used for some cases of m and n.
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Table 5.10: MLEs and Bayes estimates with respect to different loss functions when
Prior 0 is used, for @« = 2 and A = 1. (record data)

Cases MLE Sq. err. | Abs. err. | a*=0.1|a*=10]| a*=5
Bayes 1 | Bayes 2 | Bayes 3 | Bayes 4 | Bayes 5

all 3.0691 | 2.2599 | 2.3358 | 2.1801 | 2.0603 | 1.5709
n=6 (3.0490) || (0.2801) | (0.3107) | (0.3171) | (0.4648) | (1.7100)

A | 0.9000 | 1.4838 | 1.3380 | 1.2965 | 1.1515 | 0.7055
(0.6953) || (0.8299) | (0.8628) | (0.8794) | (0.9968) | (1.7600)

a|l 27464 | 2.2033 | 2.2668 | 2.1662 | 2.1247 | 1.9549
n=09 (1.3480) || (0.1386) | (0.1579) | (0.1542) | (0.2582) | (0.4830)

Al 09038 | 1.4023 | 1.2971 | 1.2764 | 1.1894 | 0.8755
(0.5460) || (0.5533) | (0.5909) | (0.5901) | (0.6433) | (1.0180)

a|l 24559 | 2.1342 | 21609 | 2.1280 | 2.1214 | 2.0912
n=12 (0.6759) || (0.0244) | (0.0282) | (0.0258) | (0.0307) | (0.0701)

A 09038 | 1.2390 | 1.1943 | 1.1698 | 1.1167 | 0.8981
(0.5321) || (0.2441) | (0.2515) | (0.2535) | (0.2697) | (0.4353)

ol 23462 | 2.1120 | 2.1282 | 2.1100 | 2.1074 | 2.0798
n=15 (0.5217) || (0.0075) | (0.0077) | (0.0074) | (0.0080) | (0.0700)

Al 09132 | 1.1936 | 1.1618 | 1.1464 | 1.1083 | 0.9455
(0.4167) || (0.1473) | (0.1498) | (0.1504) | (0.1573) | (0.2325)

Note: The first entry represents the average estimate and the second entry is the
MSE.
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Table 5.11: Bayes estimates with respect to different loss functions when Prior 1 is

used, for &« =2 and A = 1. (record data)

Cases Sq. err. | Abs. err. | a*=0.1|a*"=10]| a* =
Bayes 1 | Bayes 2 | Bayes 3 | Bayes 4 | Bayes 5
1.9145 1.9498 1.9070 1.8999 1.8498
n=~6 (0.0236) | (0.0251) | (0.0236) | (0.0239) | (0.0331)
1.2254 1.1583 1.1277 | 1.0473 | 0.7332
(0.2606) | (0.2673) | (0.2716) | (0.2970) | (0.5380)
1.9946 2.0169 1.9918 1.9894 1.9765
n=29 (0.0097) | (0.0103) | (0.0097) | (0.0097) | (0.0101)
1.2294 1.1804 1.1578 1.0990 | 0.8569
(0.1815) | (0.1849) | (0.1873) | (0.2009) | (0.3469)
1.9981 2.0138 1.9969 1.9958 1.9906
n =12 (0.0043) | (0.0046) | (0.0043) | (0.0043) | (0.0044)
1.1163 1.0815 1.0670 1.0265 | 0.8535
(0.1151) | (0.1169) | (0.1178) | (0.1244) | (0.1968)
1.9753 1.9870 1.9746 1.9740 1.9712
n =15 (0.0025) | (0.0027) | (0.0025) | (0.0025) | (0.0025)
1.1724 1.1455 1.1308 1.0965 | 0.9443
(0.1036) | (0.1052) | (0.1056) | (0.1103) | (0.1642)
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Table 5.12: Average credible interval lengths (A.L) and coverage percentages (C.P).
(record data)

Prior 0 Prior 1

Cases AL C.pP AL C.P

n = « | 4.8235 0.94 | 1.8495 0.94
A | 4.8064 0.92 | 2.5439 0.95

n=29 a | 3.0842 0.94 | 1.5988 0.96
A | 3.8603 0.96 | 2.2788 0.96

n=12 « | 2.5697 0.94 | 1.4280 0.93
A | 3.4542 0.94 | 2.2107 0.94

n=15 « | 2.2221 0.95 | 1.3082 0.96
A | 3.2821 0.94 | 2.1062 0.96

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



96

Comments and observations
From Tables 5.10-5.12, we may observe the following remarks:

(1) From Table 5.10, we observe that as n increases the performances of MLEs

of & and A\ become better in terms of biases and MSEs.

(2) From Figures 5.3-5.4, it is observed that all Bayes estimates of the shape pa-
rameter « using Prior 0 are quite close to each other. These estimates compete the
corresponding MLEs in the sense of biases and MSEs. For the scale parameter, its

Bayes estimator of A works similarly for n > 10, approximately.

(3) It can be noticed that the estimates overestimate the parameters o and A\ except
for the MLE and Bayes estimate of A\, which underestimate A in all cases considered.
One can also notice that for each Bayes estimates 1-5, the biases and MSEs decrease

as the record sample size n increases in the most cases considered.

(4) The Bayes estimates of @ and A obtained by using Prior 1 (informative prior)
perform well comparing the corresponding ones obtained by using Prior 0 (non-
informative prior). Also, these Bayes estimates perform well comparing the MLEs

in all cases considered.

(5) From Table 5.12, it is evident that the average length of the credible inter-
vals for  and A, when Prior 1 is used, becomes smaller as expected, and decreases
as n increases. For both Prior 0 and 1, the simulated probabilities for 0.95 are quite
close to 0.95.
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Table 5.13: Point predictors and PIs for future records Xy ,), 1 < m < n based on

some observed records.

Size of observed | Xy, Loss function Predicted 95%PIs
sample values
m =6 Xu Sq. err. 2.1333 | (1.9673,2.6302)
Ab. err. 2.0756 (1.9687,2.6223)
LINEX (a* =0.1) 2.1256 (1.9673,2.4558)
LINEX (a* = 0.5) 2.1231 (1.9673,2.4086)
LINEX (a* = 1.0) 2.1200 (1.9673,2.3601)
Xu(s) Sq. err. 2.2893 | (1.9328,2.9626)
Ab. err. 2.2234 | (2.0146,2.8916)
LINEX (a* =0.1) 2.2751 (1.9329,2.6543)
LINEX (a* = 0.5) 2.2703 (1.9330,2.5738)
LINEX (a* = 1.0) 2.2646 (1.9331,2.4969)
Xv(9) Sq. err. 2.4341 (2.0500, 3.2423)
Ab. err. 2.3617 | (2.0913,3.1052)
LINEX (a* =0.1) 2.4141 (2.0495,2.8104)
LINEX (a* = 0.5) 2.4074 | (2.0493,2.6998)
LINEX (a* = 1.0) 2.3993 (2.0491,2.6010)
Xu(i0) Sq. err. 2.5697 | (2.1087,3.4931)
Ab. err. 2.4912 (2.1826, 3.2896)
LINEX (a* =0.1) 2.5445 (2.1076,2.9440)
LINEX (a* = 0.5) 2.5361 (2.1072,2.8055)
LINEX (a* = 1.0) 2.5259 (2.1067,2.6888)
Xu) Sq. err. 2.6976 | (2.1705,3.7241)
Ab. err. 2.6132 (2.2806, 3.4548)
LINEX (a* =0.1) 2.6677 | (2.1685,3.0629)
LINEX (a* = 0.5) 2.6577 | (2.1678,2.8978)
LINEX (a* = 1.0) 2.6456 (2.1669,2.7665)
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Size of observed | Xy Loss function Predicted 95%PIs
sample values
m=9 Xv(i0) Sq. err. 3.5548 (3.3724,4.0820)
Ab. err. 3.4939 | (3.3733, 4.0956)
LINEX (a* =0.1) 3.5494 (3.3724,3.9631)
LINEX (a* = 0.5) 3.5475 (3.3724,3.9267)
LINEX (a* = 1.0) | 3.5452 | (3.3724,3.8875)
Xuan Sq. err. 3.7323 | (3.4096,4.4388)
Ab. err. 3.6651 (3.4191, 4.4243)
LINEX (a* =0.1) 3.7220 (3.4095, 4.2242)
LINEX (a* = 0.5) 3.7184 (3.4095, 4.1604)
LINEX (a* = 1.0) 3.7140 (3.4094, 4.0951)
X2 Sq. err, 3.9016 | (3.4707,4.7422)
Ab. err. 3.8302 | (3.4967,4.6948)
LINEX (a* =0.1) 3.8868 (3.4703,4.4369)
LINEX (a* = 0.5) | 3.8817 | (3.4702,4.3474)
LINEX (a* = 1.0) 3.8755 (3.4700, 4.2600)
Xva3) Sq. err. 4.0637 (3.5432,5.0169)
Ab. err. 3.9885 (3.5908, 4.9345)
LINEX (a* =0.1) 4.0449 (3.5424, 4.6237)
LINEX (a* = 0.5) 4.0384 (3.5421, 4.5099)
LINEX (a* = 1.0) | 4.0305 | (3.5418, 4.4030)
Xy Sq. err. 42195 | (3.6214,5.2720)
Ab. err. 4.1407 | (3.6939,5.1536)
LINEX (a* = 0.1) | 4.1970 | (3.6200,4.7934)
LINEX (a* = 0.5) 4.1892 (3.6195, 4.6559)
LINEX (a* = 1.0) | 41797 | (3.6189,4.5318)
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Size of observed | Xy Loss function Predicted 95%PIs
sample values
m =12 Xyas) Sq. err. 41090 | (3.9249, 4.6445)
Ab. err. 4.0471 (3.9251,4.6751)
LINEX (a* = 0.1) | 4.1041 | (3.9249,4.5364)
LINEX (a* = 0.5) 4.1024 (3.9249,4.5059)
LINEX (¢* = 1.0) | 4.1003 | (3.9249,4.4732)
Xo Sq. err. 1.2908 | (3.9626,5.0172)
Ab. err. 4.2215 (3.9641, 5.0538)
LINEX (a* =0.1) 4.2813 (3.9625,4.8172)
LINEX (a* = 0.5) 4.2780 (3.9625, 4.7632)
LINEX (a* = 1.0) | 4.2740 | (3.9624,4.7074)
Xu (1) Sq. err. 4.4664 | (4.0253,5.3395)
Ab. err. 4.3916 (4.0288, 5.3742)
LINEX (a* =0.1) 4.4526 (4.0250, 5.0500)
LINEX (a* = 0.5) | 4.4478 | (4.0249,4.9738)
LINEX (a* = 1.0) | 4.4420 | (4.0247,4.8972)
Xuo) Sq. err, 4.6365 | (4.1006,5.6349)
Ab. err. 4.5567 (4.1063, 5.6626)
LINEX (a* = 0.1) | 4.6187 | (4.1000,5.2573)
LINEX (a* = 0.5) 4.6125 (4.0998, 5.1597)
LINEX (a* = 1.0) 4.6050 (4.0995, 5.0640)
Xvuar) Sq. err. 4.8017 (4.1827,5.9121)
Ab. err. 47169 | (4.1907,5.9290)
LINEX (a* = 0.1) | 4.7800 | (4.1817,5.4476)
LINEX (a* = 0.5) 4.7724 (4.1814,5.3291)
LINEX (a* = 1.0) | 4.7633 | (4.1809,5.2156)
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Size of observed | Xy Loss function Predicted 95%PIs
sample values
m =15 Xu(i6) Sq. err. 4.6615 | (4.4859,5.1655)
Ab. err. 4.6033 | (4.4861,5.1198)
LINEX (a* =0.1) 4.6576 (4.4859, 5.0835)
LINEX (a* = 0.5) 4.6562 (4.4859,5.0557)
LINEX (a* = 1.0) | 4.6546 | (4.4859,5.0232)
Xuar Sq. err. 4.8364 | (4.5224,5.5153)
Ab. err. 4.7724 (4.5249, 5.4257)
LINEX (a* =0.1) 4.8289 (4.5223,5.3639)
LINEX (a* = 0.5) 4.8262 (4.5223,5.3127)
LINEX (a* = 1.0) | 4.8230 | (4.5223,5.2545)
Xuas) Sq. err. 5.0068 | (4.5834,5.8179)
Ab. err. 49388 | (4.5915,5.6848)
LINEX (a* =0.1) 4.9958 (4.5831,5.5985)
LINEX (a* = 0.5) | 4.9920 | (4.5830,5.5243)
LINEX (a* = 1.0) 4.9872 (4.5829, 5.4421)
Xuo) Sq. err, 5.1729 | (4.6571,6.0960)
Ab. err. 51016 | (4.6736,5.9194)
LINEX (a* = 0.1) | 5.1587 | (4.6565,5.8091)
LINEX (a* = 0.5) 5.1537 (4.6563,5.7118)
LINEX (a* = 1.0) 5.1476 (4.6560, 5.6068)
X (20) Sq. err. 5.3352 (4.7378,6.3576)
Ab. err. 5.2608 | (4.7650,6.1377)
LINEX (a* = 0.1) | 5.3179 | (4.7368,6.0036)
LINEX (a* = 0.5) 5.3118 (4.7364, 5.8833)
LINEX (a* = 1.0) 5.3043 (4.7359, 5.7566)
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Table 5.14: Average values and MSEs of the predictors of future records based on

one-sample prediction problem.

Prior 0 Prior 1
m | Xyn) Loss function Average predicted | MSE | Average predicted | MSE
values values
6 Xv(r) Sq. err. 2.8022 0.3551 2.7330 0.2569
Ab. err. 2.7298 0.3440 2.6485 0.2305
LINEX (a* =0.1) 2.8390 0.3644 2.7194 0.2507
LINEX (a* =0.5) 2.8273 0.3622 2.7150 0.2488
LINEX (a* = 1.0) 2.8156 0.3601 2.7098 0.2467
Xu(s) Sq. err. 3.0101 0.4661 2.8960 0.3452
Ab. err. 2.9224 0.4531 2.7977 0.3032
LINEX (a* =0.1) 3.0742 0.4634 2.8699 0.3284
LINEX (a* = 0.5) 3.0354 0.4703 2.8616 0.3242
LINEX (a* = 1.0) 3.0094 0.4627 2.8519 0.3196
Xv(9) Sq. err. 3.1904 0.4625 3.0461 0.4011
Ab. err. 3.1122 0.4223 2.9319 0.3730
LINEX (a* =0.1) 3.2526 0.5556 3.0064 0.4017
LINEX (a* =0.5) 3.2177 0.4952 2.9935 0.3940
LINEX (a* =1.0) 3.1853 0.4501 2.9783 0.3853
9 | Xuqo) Sq. err. 3.1844 0.2396 3.1558 0.2281
Ab. err. 3.1065 0.2278 3.0957 0.2196
LINEX (a* =0.1) 3.1734 0.2377 3.1496 0.2272
LINEX (a* =0.5) 3.1698 0.2371 3.1475 0.2269
LINEX (a* =1.0) 3.1656 0.2364 3.1450 0.2265
Xvu Sq. err. 3.4382 0.3027 3.2306 0.2155
Ab. err. 3.3586 0.2901 3.1632 0.2000
LINEX (a* =0.1) 3.4230 0.3002 3.2183 0.2118
LINEX (a* =0.5) 3.4178 0.2994 3.2140 0.2105
LINEX (a* = 1.0) 3.4117 0.2985 3.2090 0.2091
Xv12) Sq. err. 3.5480 0.4022 3.4624 0.2580
Ab. err. 3.4598 0.3718 3.3870 0.2449
LINEX (a* =0.1) 3.5246 0.3908 3.4444 0.2548
LINEX (a* =0.5) 3.5168 0.3873 3.4385 0.2537
LINEX (a* =1.0) 3.5076 0.3834 3.4313 0.2525
12 | Xyas) Sq. err. 3.4548 0.3870 3.4799 0.2577
Ab. err. 3.4042 0.3728 3.4311 0.2498
LINEX (a* =0.1) 3.4506 0.3854 3.4761 0.2571
LINEX (a* = 0.5) 3.4491 0.3848 3.4748 0.2569
LINEX (a* = 1.0) 3.4473 0.3842 3.4732 0.2566
Xv(14) Sq. err. 3.7024 0.2821 3.7908 0.2458
Ab. err. 3.6443 0.2701 3.7336 0.2387
LINEX (a* =0.1) 3.6939 0.2796 3.7830 0.2448
LINEX (a* =0.5) 3.6910 0.2788 3.7803 0.2445
LINEX (a* =1.0) 3.6874 0.2779 3.7770 0.2441
Xv(is) Sq. err. 3.8192 0.3173 3.8573 0.2326
Ab. err. 3.7621 0.3078 3.7983 0.2220
LINEX (a* =0.1) 3.8086 0.3151 3.8463 0.2300
LINEX (a* = 0.5) 3.8050 0.3143 3.8425 0.2291
LINEX (a* = 1.0) 3.8005 0.3135 3.8378 0.2281
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Table 5.15: Point predictors and PIs for unobserved records Yy ), k = 1, ..., n, based

on another independent observed record sample of size m.

Size of | Size of Loss function Predicted 95%PIs
observed | future | Yy values
sample | sample
m=2~06 n=4 | Yyn Sq. err. 0.6060 | (0.1041,1.3800)
Ab. err. 0.5597 | (0.1291,1.3504)
LINEX (a* =0.1) | 0.4952 | (0.1174,1.3876)
LINEX (a* =0.5) | 0.4458 | (0.1212,1.3905)
LINEX (a* = 1.0) 0.4321 (0.1257,1.3941)
Yi(3) Sq. err. 1.1146 | (0.4873,2.0060)
Ab. err. 1.0685 | (0.5747,1.8600)
LINEX (a* =0.1) 1.0408 | (0.5457,2.0318)
LINEX (a* = 0.5) 1.0135 | (0.5696,2.0421)
LINEX (a* =1.0) | 0.9783 | (0.6023,2.0556)
Y Sq. err. 1.2947 | (0.6364,2.2425)
Ab. err. 1.2436 | (0.7480,2.0402)
LINEX (a* =0.1) 1.2249 | (0.7183,2.2823)
LINEX (a* = 0.5) 1.1997 | (0.7556,2.2990)
LINEX (a* = 1.0) 1.1680 | (0.8080,2.3217)
m=9 | n=6 | Yy Sq. err. 0.7759 | (0.1239,1.8204)
Ab. err. 0.7080 | (0.1201,1.8631)
LINEX (a* =0.1) | 0.6236 | (0.1310,1.8290)
LINEX (a* =0.5) | 0.5577 | (0.1335,1.8323)
LINEX (a* =1.0) | 0.4590 | (0.1367,1.8364)
Y3 Sq. err. 1.4774 | (0.6281,2.6714)
Ab. err. 1.4181 | (0.5693, 2.7147)
LINEX (a* =0.1) 1.3758 | (0.6835,2.6973)
LINEX (a* = 0.5) 1.3379 | (0.7080,2.7074)
LINEX (a* = 1.0) 1.2896 | (0.7435,2.7206)
Yu(6) Sq. err. 2.1556 | (1.1792,3.5315)
Ab. err. 2.0881 (1.0410, 3.5227)
LINEX (a* =0.1) | 2.0669 | (1.3274,3.5877)
LINEX (a* =0.5) | 2.0350 | (1.4068,3.6101)
LINEX (a* = 1.0) 1.9952 | (1.5338,3.6394)
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Size of | Size of Loss function Predicted 95%PIs
observed | future | Yy values
sample | sample

m=12 | n=28 | Yyq) Sq. err. 1.3220 (0.3699,2.5011)

Ab. err. 1.2843 (0.3667,2.4614)

LINEX (a* =0.1) 1.1779 (0.3778,2.5063)

LINEX (a* = 0.5) 1.1163 (0.3807,2.5082)

LINEX (a* = 1.0) 1.0281 (0.3843,2.5107)

Y Sq. err. 2.4178 | (1.4631,3.5477)

Ab. err. 2.3874 (1.4289, 3.4699)

LINEX (a* =0.1) 2.3527 (1.5406, 3.5646)

LINEX (a* = 0.5) 2.3285 (1.5727,3.5710)

LINEX (a* = 1.0) 2.2980 (1.6163, 3.5792)

Yus) Sq. err. 3.1758 (2.2053,4.3516)

Ab. err. 3.1401 (2.1486,4.2155)

LINEX (a* =0.1) 3.1243 (2.3830,4.3861)

LINEX (a* = 0.5) 3.1056 (2.4661,4.3995)

LINEX (a* = 1.0) 3.0822 (2.5822,4.4169)

m=15 | n=10 | Yyq) Sq. err. 0.8506 (0.1321, 1.9876)

Ab. err. 0.7776 (0.1236, 1.9819)

LINEX (a* =0.1) 0.6814 (0.1357,1.9925)

LINEX (a* = 0.5) 0.6076 (0.1371,1.9944)

LINEX (a* = 1.0) 0.4966 (0.1387,1.9966)

Yus) Sq. err. 2.1937 (1.1605, 3.5537)

Ab. err. 2.1370 (1.0196, 3.5541)

LINEX (a* =0.1) 2.1003 (1.2435,3.5775)

LINEX (a* = 0.5) 2.0660 (1.2800, 3.5866)

LINEX (a* = 1.0) 2.0227 (1.3320, 3.5984)

Y 10) Sq. err. 3.2077 (2.0147,4.7808)

Ab. err. 3.1425 (1.7467,4.7213)

LINEX (a* =0.1) 3.1243 (2.2288,4.8347)

LINEX (a* =0.5) 3.0942 (2.3387,4.8561)

LINEX (a* = 1.0) 3.0567 (2.5026, 4.8842)
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Size of | Size of Loss function Predicted 95%PIs
observed | future | Yy values
sample | sample

m=20 | n=15| Yyq) Sq. err. 1.1702 (0.2365, 2.4789)

Ab. err. 1.1056 (0.2448,2.4780)

LINEX (a* =0.1) 0.9874 (0.2399, 2.4823)

LINEX (a* = 0.5) 0.9076 (0.2411, 2.4836)

LINEX (a* = 1.0) 0.7900 (0.2426,2.4851)

Yu(s) Sq. err. 3.4087 | (2.2290,4.8328)

Ab. err. 3.3661 (2.3323,4.7163)

LINEX (a* =0.1) 3.3375 (2.3620, 4.8545)

LINEX (a* = 0.5) 3.3115 (2.4196, 4.8628)

LINEX (a* = 1.0) 3.2788 (2.4979,4.8734)

Yo Sq. err. 4.5942 (3.3091, 6.1587)

Ab. err. 4.5457 | (3.4887,5.9444)

LINEX (a* =0.1) 4.5317 (3.5895, 6.2026)

LINEX (a* = 0.5) 4.5090 (3.7253,6.2198)

LINEX (a* = 1.0) 4.4807 (3.9120, 6.2424)
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Table 5.16: Average values and MSEs of the predictors of unobserved records based

on two-sample prediction problem.

Prior 0 Prior 1

m Yo Loss function Average predicted | MSE | Average predicted | MSE
values values

6 Yo Sq. err. 0.9682 0.1606 0.9001 0.0518
Ab. err. 0.9085 0.1907 0.8215 0.0446
LINEX (a* =0.1) 0.7859 0.1898 0.7299 0.0386
LINEX (a* =0.5) 0.6891 0.2195 0.6571 0.0353
LINEX (a* = 1.0) 0.5463 0.2596 0.5478 0.0339
Yu(2) Sq. err. 1.3559 0.1830 1.1970 0.0626
Ab. err. 1.2322 0.3151 1.1268 0.0558
LINEX (a* =0.1) 1.1547 0.3041 1.0673 0.0535
LINEX (a* =0.5) 1.0866 0.3274 1.0172 0.0523
LINEX (a* = 1.0) 0.9855 0.3771 0.9512 0.0531
Yu(s) Sq. err. 1.7434 0.2927 1.7264 0.0390
Ab. err. 1.5613 0.4185 1.6352 0.0403
LINEX (a* =0.1) 1.4703 0.4755 1.5860 0.0446
LINEX (a* =0.5) 1.3566 0.5972 1.5346 0.0504
LINEX (a* = 1.0) 1.2526 0.6474 1.4692 0.0607
9 Yo Sq. err. 0.8623 0.1582 0.8515 0.0306
Ab. err. 0.7845 0.1189 0.7699 0.0385
LINEX (a* =0.1) 0.6922 0.1794 0.6773 0.0371
LINEX (a* =0.5) 0.6190 0.1868 0.6026 0.0406
LINEX (a* = 1.0) 0.4948 0.2144 0.4889 0.0490
Yu(s) Sq. err. 1.6310 0.1703 1.6965 0.0742
Ab. err. 1.5575 0.1975 1.6249 0.0775
LINEX (a* =0.1) 1.4980 0.1988 1.5747 0.0759
LINEX (a* =0.5) 1.4483 0.2108 1.5294 0.0773
LINEX (a* = 1.0) 1.3832 0.2281 1.4717 0.0797
Yue) Sq. err. 2.4261 0.2266 2.4843 0.1458
Ab. err. 2.3270 0.2458 2.4038 0.1300
LINEX (a* =0.1) 2.2916 0.2506 2.3806 0.1280
LINEX (a* =0.5) 2.2417 0.2660 2.3434 0.1227
LINEX (a* = 1.0) 2.1699 0.3138 2.2972 0.1170
12 Yo Sq. err. 0.9323 0.1145 0.8974 0.0314
Ab. err. 0.8662 0.1324 0.8328 0.0365
LINEX (a* =0.1) 0.7744 0.1246 0.7403 0.0344
LINEX (a* = 0.5) 0.7066 0.1295 0.6724 0.0363
LINEX (a* = 1.0) 0.6062 0.1392 0.4571 0.0408
Yu(s) Sq. err. 2.2125 0.2054 2.2037 0.1157
Ab. err. 2.1452 0.2247 2.1411 0.1123
LINEX (a* =0.1) 2.1106 0.2261 2.1075 0.1112
LINEX (a* = 0.5) 2.0737 0.2343 2.0724 0.1101
LINEX (a* =1.0) 2.0274 0.2453 2.0283 0.1092
Yu(9) Sq. err. 2.9784 0.3093 3.1510 0.1147
Ab. err. 2.9075 0.3050 3.0744 0.1148
LINEX (a* =0.1) 2.8894 0.3077 3.0550 0.1130
LINEX (a* = 0.5) 2.8575 0.3085 3.0206 0.1130
LINEX (a* = 1.0) 2.8179 0.3107 2.9779 0.1133
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Comments and observations
From Tables 5.13-5.16, we may observe the following remarks:

(1) It is observed that from Tables 5.13 and 5.15, the predicted values for the future
records Xy (,) (unobserved records Xy ) under different loss functions, are quite
close to each other and fall in their corresponding 95% prediction intervals, based

on one-sample and two-sample prediction problems.

(2) From Tables 5.14 and 5.16, we notice that the predictors of the future record
Xu(n) (unobserved records X)) obtained by using Prior 1 perform better than the
predictors obtained by using Prior 0.

Example 2: (real data)

In this example we analyze the total seasonal annual rainfall (in inches) recorded
at Loss Angeles Civic Center during 132 years, from 1878 to 2009 (season July 1
- June 30). The data set can be obtained from the loss Angeles Civic Website:
http://www.laalmanac.com/weather/wel3.htm.

For the complete data set, we have computed the maximum likelihood estima-
tors of a and A and they are 2.2438 and 0.0018, respectively. The corresponding
Kolmogorov-Smirnov (KS) distance becomes 0.0939 and the associated p-value is
0.1949. Therefore the KS indicates that Weibull distribution can be used to analyze
this rainfall data. We used the upper records from 1930 to 2009 which were as
follows: 12.54, 16.93, 21.66, 22.41, 23.43, 32.76, 33.44, 37.96.

We compute the Bayes estimates with respect to different loss function: squared er-
ror (Sq. err.), absolute error (Abs. err.) and LINEX function with different choices
of a* : 0.1,1.0,5.0. The results are presented in Table 5.17. All the estimates are
quite close to each other. We obtain the 95% credible intervals for v and A and they
are (1.7187,1.8592) and (0.0045,0.0206), respectively. It is noticed that the Bayes
estimates of & and A are falling in the credible intervals.

Also, we consider the prediction of the 9-th, 10-th and 11-th future records. The
prediction values and the 95% predictive interval of the 9-th, 10-th and 11-th future
records are presented in Table 5.18. It is observed that all predicted values, with
respect to different loss functions, are all ordered and fall in their corresponding

predictive intervals.
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Table 5.17: Bayes estimates with respect to different loss functions for the data in
example 2.

Sq. err. | Abs. err. | a*=0.1 |a*=10]| a*=5
Bayes 1 | Bayes 2 | Bayes 3 | Bayes 4 | Bayes 5

a | 1.8160 1.8249 1.8155 1.8151 1.8134
A | 0.0110 0.0103 0.0101 0.0094 | 0.0060

Table 5.18: Point predictors and Pls for the 9-th, 10-th and 11-th future records.

Size of observed | Xy, Loss function Predicted 95%PIs

sample values

m=38 Xu(9) Sq. err. 42.76 (38.07,57.32)

Ab. err. 41.05 (38.06, 57.05)

LINEX (a* =0.1) 42.45 (38.07,53.48)

LINEX (a* = 0.5) 42.35 (38.07,52.31)

LINEX (a* = 1.0) 42.23 (38.07,51.04)

Xv(0) Sq. err. 47.56 (38.96, 68.48)

Ab. err. 45.44 (38.88,67.92)

LINEX (a* =0.1) 46.94 (38.96,61.07)

LINEX (a* = 0.5) 46.74 (38.96, 58.87)

LINEX (a* = 1.0) 46.51 (38.96, 56.61)

Xu) Sq. err. 52.36 (40.44,78.73)

Ab. err. 49.88 (40.22,77.63)

LINEX (a* =0.1) 51.44 (40.43,67.60)

LINEX (a* = 0.5) 51.14 (40.43,64.35)

LINEX (a* = 1.0) 50.78 (40.42,61.17)
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Figure 5.5: Estimate of the density function for a, based on
the record data in example 2.

500 4

400

200 4

200

density function

100 4

0.0045 0.0020 0.0135 0.0180 0.0225 0.0270 0.0315

Figure 5.6: Estimate of the density function for A\, based on
the record data in example 2.
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Appendix 1

A simple Algorithm for Generating Random Variates with a Log-Concave density,
by Devroye (1984):
Let ¢ = f(m), and let f be log-concave on [m, oo] with mode at m.

Algorithm (Log-Concave densities, Exponential version)

e Step O

Compute ¢ « f(m), r < loge. (To be done once for each density.)

e Step 1
Generate U uniform on [0,2], and E independent of U and exponential.
fU<1lthen X «U, T« —-FE

else X «— 1+ E*, T «— —FE — E*(E* is a new exponential random variate)

e Step 2
X%m—i—%

If T'<logf(X)—r then exit else go to 1
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Appendix 2
(Ko ComputationsofMLEsandBayesestimatorsunderdifferentlossfunctions
whenbothaand A\areunknownbasedonpriorO...................... *)

a = 2; X = 1; (* The assumed values of the weibull parameters*)

a = 0; b = 0; (*Assumedvaluesofhyperparametersofr1(\/data)...Prior0...*)
¢ = 0;d = 0; (*Assumedvaluesofhyperparametersofr2(a)........ Prior0...*)

it = 1000; (* number of MCMC samples*)

M = 100; (* number of iterations*)

n = 30; (* size of sample drawn from weibull *)

m = 10; (* size of progressive type 2 censored sample *)

itl =m+ 5;

astarl = 0.1; astar2 = 1; astar3 = 5;

r[1] = 5;7[2] = 5;r[3] = 5;r[4] = 5;7[5] = 0;7[6] = 0;7[7] = 0;7[8] = 0;7[9] = 0;7[10] =
r[11] = 0;r[12] = 0;7[13] = 0;7[14] = 0;r[15] = 0;r[16] = 0;r[17] = 0;r[18] = 0;r[19] = 0;

r[20] = 0; (* censoring scheme *)
For[l = 1,1 < M, l++, (* loop of iterations *)

Do [w[i] = Random([}; v[i] = wli]* (1 /(i + X jep_i1 7[K]) ) - {5, 1,m}] ;
Do [uli] = 1 — [TiL,,_iy1 v[k]; z[i] = ((=1/A) * Log[1 — u[i]})(1/a), {s,1,m}] ;

(*computationsofiterationsofMLEsforaand \. Hereshapeparameteraisunknown*)

alphaMLEL[l] =

al/.

FindRoot [(m/a1) + (X7, Loglefi]) — (m /(S (zlil"a1) * (1 + i])))
(S (zli"a1) * Loglali] * (1 +rfi))) == 0, {a1, 2}

lambdaMLEL1[l] = m /(3 i, (z[i]*alphaMLE1[l]) * (1 + 7[3])) ;
(*....computingtheiterationmode............cccccecirvieniniiniinnieneninnnen. *)

mode =
a2/.

FindRoot [-d + ((c+m — 1)/a2) + (>_i~, Log[z[¢]]) — ((a + m) /(b + Y i, (z[i]"a2) * (1 + r[z])))

* (2221 ((z[1]"a2) * Loglz[i]] * (1 + r[i]))) == 0, {a2,2}];

fmode =

Log [e~#m°de x (mode™(c + m — 1)) * ([T, (z[i]* (mode — 1)))

¥ (1/((b+ S (alilmode) x (1 -+ rfi)) Aa +m)))]

(Koo generatingMCMCsamples{(ai, Ai),i = 1,2, ..., M = it}.......... *)
For[j = 1,7 <it, j++, (* loop of iterations *)
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0=1;

Do[u2[j, ] = 2 * Random[], {3, 1, it1}];

Do[u3[j, i = Random]], {3, 1,it1};

Do[u4[j, i] = Random]], {i, 1,it1}];

Dole[j, ] = (—1/6) * Log[1 — u3|[j,1]], {3, 1,it1}];

Dolel[j,i] = (—1/6) * Log[1 — u4[j, ]], {1, 1,it1}];

Do[If[u2[j,i] < 1, {xx[j,i] = u2[j, 1], t[j, ] = —el[j, 3]}, {xx[s,%] = 1 + el[j, 4],

t[s, 4] = —elj, 1] — elfs,4]}], {s, 1,it1});

Do[x2[j, 7] = mode + (xx[j, 7] /fmode), {3, 1,it1}];

Do [fx2[j,i] = Log [~ + (x2[j, i e +m — 1)) » ([T (o) (2L, il - 1))
*(L/(0+ L (=l x2[j, i]) * (1 + r[i])) “(a + m)))], {i, 1, it1}];

Dol[If[t[4, 7] < (Logl[fx2[j,]/fmode]), {rv[j,i] = x2[4, ]}, {rv[j, ] = 222222}, {3, 1, it1}];

Do[If[rv[j, k] # 222222, {alphalj] = rv|[j, k], Break[]}, alpha[j] = rv[j, k + 1]], {k, 1,it1}];
p=m+a;0 =b+3 L, ((z[f] alphals]) * (1 +r[d]));

dist = GammaDistribution|u, (1/0)];
lambdalj] = Random|dist];

(Koo Endofgeneration............ccccocueviiiiiinniniicniinnicnenne. *)
|; (* End of j loop *)
(oo ComputationofiterationBayesestimators............c.cccceevuernennnen. *)

alphaBE11[l] = (z?: . alpha[i]) / it;

lambdaBE11[l] = (2};1 lambda[i]) / it;

datac = Table[alphali], {3, 1,it}];

ordera: = Sort[datac];

data\ = Table[lambdali], {7, 1,it}];

order\ = Sort[datal];

alphaBE22[l] = (ordera][it/2]] + orderc|[(it/2) + 1]])/2;

lambdaBE22[l] = (order\[[it/2]] + orderA[[(it/2) + 1]])/2;

alphaBE331[l] = ((1 /it) « (1 /(a.lpha[i])"astarl)) A(—1/astarl);
lambdaBE331[l] = ((1/11;) £ 1(1/(lambda['i])’\astar1)) A(—1/astarl);
alphaBE332[l] = ((1 /it) * (1 /(alpha[i])"astar2)) A(—1/astar2);
lambdaBE332[l] = ((1 Jit) « ¢ (1 /(lambda[i])"astaﬂ)) A(=1/astar2);
alphaBE333[l] = ((1 /it) * Z;t:l(l / (a.lpha[i])"astar3)) A(—1/astar3);
lambdaBE333(l] = ((1 /it) * 8 1/ (lambda[z'])"astar3)) A(—1/astar3);
|; (*...Endoflloop....*)

(*computations of MLEs and Bayes estimators and their MSE*)
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alphaMLE = (Ef‘il a.lphaMLEl[l]) / M;

MSE1 = (zf‘il(alphaMLEm] - alphaMLE)"2) / M;
lambdaMLE = (2{‘; lambdaMLEl[l]) / M;

MSE2 = (z{‘il(lmnbdaMLEl[l] - lambdaMLE)"2) / M;

(*Bayes estimator under square error loss function*)
alphaBE1 = (Zfi . alphaBEll[l]) / M;

MSE3 = (zf‘il(alphaBEn[l] - alphaBEl)"2) / M;
lambdaBE1 = (z;{‘il lambdaBEll[l]) / M;
MSE4 = (Ef‘il(lambdaBEll[l] - 1a.mbdaBE1)"2) / M;

(*Bayes estimator under absolute error loss function*)
alphaBE2 = (Zfil alphaBE22[l]) / M;

MSES5 = (zf‘il(alphaBEm[l] - alphaBE2)"2) / M;
lambdaBE2 = (z;{‘il lambdaBE22[l]) / M;

MSE6 = (3}, (lambdaBE22[l] — lambdaBE2)"2) / M;
(*Bayes estimator under LINRX loss function*)

[ (@ = 0.1) oo *)
alphaBE31 = (z;{‘il alphaBE331[l]) / M;

MSE7 = (S}, (alphaBE331[] - alphaBE31)2) / M;
lambdaBE31 = (z{‘i . lambdaBE331[l]) / ;

MSES = (2,"1 ,(lambdaBE331[l] — la.mbdaBE31)"2) / M;

O ) D *)
alphaBE32 = (z;{‘il alphaBE332[l]) / M;

MSE9 = (S}, (alphaBE332[l] - alphaBE32)"2) / M;
lambdaBE32 = (z{‘i . lambdaBE332[l]) /

MSE10 = (z{‘i ,(lambdaBE332[l] — lambdaBE32)"2) / M;

Koo (@* = 5) voveeeeeeeereesssen *)
alphaBE33 = (z;{‘il alphaBE333[l]) / M;

MSE11 = (5}, (alphaBE333[l] - alphaBE33)2) / M;
lambdaBE33 = (z{‘i . lambdaBE333[l]) / ;

MSE12 = (z{‘i ,(lambdaBE333[l] — lambdaBE33)"2) / M;
Print["Prior 0 "];

Print["Scheme n = ", n," m = ", m|;
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Print["Cencoring scheme is (", r[1],",",r[2],",", r[3],",", r[4],",",r[5], ",",
7'[6], n,n,,’.[7]’ n,n’,,.[g], n’n’,,.[g]’ ",",’l"[].O], n)n];
Print ["Parameter | MLE | S.E.L | A.E.L | a*=", astarl, "| a*=", astar2, "| a*=", astar3, "|"];

Print[" a & ", NumberForm[alphaMLE, 5|, " & ", NumberForm[alphaBE1, 5]," & ",
NumberForm[alphaBE2, 5|, " & ", NumberForm[alphaBE31, 5], " & ", NumberForm[alphaBE32, 5]
" & ", NumberForm[alphaBE33, 5];

Print[" MSE(a) & $(", NumberForm[MSE1, 4], ")$&$(", NumberForm[MSE3, 4], ")$&$(",
NumberForm[MSES5, 4], ")$&$(", NumberForm[MSE?7, 4], ")$&$(", NumberForm[MSE9, 4],
")$&$(", NumberForm[MSE11, 4], ")$"];

Print[" A & ", NumberForm[lambdaMLE, 5]," & ", NumberForm[lambdaBE1, 5]," & ",
NumberForm[lambdaBE2, 5], " & ", NumberForm[lambdaBE31, 5], " & ", NumberForm[lambdaB
" & ", NumberForm[lambdaBE33, 5]];

Print[" MSE()) & $(", NumberForm[MSE2, 4], ")$&$(", NumberForm[MSEA4, 4], ")$&$(",
NumberForm[MSES®, 4], ")$&$(", NumberForm[MSES, 4], ")$&$(", NumberForm[MSE10, 4],
")$&$(", NumberForm[MSE12, 4], ")$"];

s Deposit

- Cgenter of Thesi
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Appendix 3

(* One sample prediction based on progrressive data *)

a =2; A = 1; (* The assumed values of the parameters weibull *)

a = 1;b = 1; (*Assumedvaluesofhyperparametersofr1(\/data)...Priorl..*)
¢ = 2;d = 1; (*Assumedvaluesofhyperparametersofr2(a)......... Priorl..*)
7 = 0.05; (* The coverage of the credible interval *)

it = 1000(* number of interations*);

astarl = 0.1; astar2 = (.5; astar3 = 1,

n = 30(* size of sample drawn from weibull *);

m = 10(* size of progressive type 2 censored sample *);

itl =m+ 5;

(* = (censoringscheme)

r[1] = 5;7[2] = 5;r[3] = 5;r[4] = 5;r[5] = 0;7[6] = 0;7[7] = 0;r[8] = 0;7[9] = 0;r[10] = 0;
r[11] = 0;r[12] = 0;7[13] = 0;7[14] = 0;r[15] = 0;r[16] = 0;r[17] = 0;r[18] = 0;r[19] = 0;
r[20] = 0; (* censoring scheme *)

(* == (generatingdatafromweibul)
Do [wli] = Random(]; v[i] = wli]* (1 /(i + X pepm_iz1 T[K]) ) , {i, 1, m}] 5

Do [ufi] = 1~ [T _ss 0lKl 2li] = ((=1/7) * Logl1 — ufi)Y(1/a), {i, 1, m}] ;
Print["The observed progressive type 2 censored sample "|;

Do|[Print["x", 3, ":",m, ":",n," = ", NumberForm[z[Z], 5], {7, 1, m}];
Print[" Y kirj ", " predicted value", " 95% prediction interval"];
Print["

mode =

a2/.

FindRoot [—d + ((m + ¢ — 1)/a2) + (7, Loglell]) — (a-+m) /(b + S (2fi]*a2) * (1 + r{])))
* (22421 ((«[i]"a2) * Log[zfi]] * (1 + rfi]))) == 0, {a2,2}];

fmode =

Log [e~%™d x (mode™(m + ¢ — 1)) * ([T, («[i]* (mode — 1))) x

(1/((b+ X234, (z[i]*mode) * (1 + r[i])) *(a +m)))];
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For[jl = 1,j1 < m, jl++,

Linitial = z[j1] + 0.05;

Uinitial = Linitial + 0.5;

Minitial = Linitial;

If[r[j1] == 0, Goto[end]);

For[k = 1,k < r[j1], k++,

CC = (P — DY * ((rfit] — K));
For[j = 1,7 <it, j++,
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(oo GeneratingMCMCsamples{(ai, Ai), i = 1,..., M = it}occcociiiniieiinieiiiicceceiceee *)
(Koo Generatingafromn2(a)byusingDevroye(1984)method.............cccevviiiniininnnnne. *)
0=

Do[u2[j, ] = 2 * Randoml[], {3, 1,it1}];

Do[u3[j,{] = Random][], {i, 1,it1}];

Do[u4[j, i) = Random]], {i, 1,it1}];

Dole[j,i] = (—1/6) * Log[1 — u3|[j,]], {3, 1,it1}];

Dolel[j,i] = (—1/0) * Log[1 — u4[j, ], {3, 1,it1}];

Do[If[u2[j, 7] < 1, {xx[j, %] = u2[j, 1|, t[5,i] = —el4, ]}, {xx[4, 3] = 1 + el[3, 1],

t[j,i] = —elj, ] — el[4,i]}], {1, 1,it1}];

Do[x2[j, {] = mode + (xx[j, 7] /fmode), {3, 1,it1}];

Do [£x2[j, 1] = Log [e™**?U x (x2[5, i]"(m + ¢ — 1)) * (TTZ; ((z[i))" (x2[j, 4] - 1))) *
(1/(+ S @l 520, ) + (1 + i) Na+ m)], i, 1, i61)];

Do|[If[t[4, 1] < (Log[fx2[j,]/fmode]), {rv[j, ] = x2[}, 1]}, {rv[j, ] = 222222}], {3, 1, it1}];

Do[If[rv[j, k] # 222222, {alphalj] = rv[j, k], Break[]}, alpha[j] = rv[j, k + 1]], {k, 1, it1}];

p=m+a;0 = b+ S, ((ofil alphalj]) x (1+ rfi));
dist = GammaDistribution|u, (1/0)];
lambda[j] = Random/[dist];

suml[j] = CC % (2 (Binomial[k — 1,4] * ((—=1)\(k — i — 1))  e(~Tambdalil(i-r{it)+(z[i1] alphai])) 4
(Gammal(1/alpha[j]) + 1, lambdal[j] = (r[j1] — %) * (z[j1]"alpha[;])]/

(lambda(j]"(1/alpha[j])  ((r[j1] —)*((1/alpha[j]) +1))))));

sum2[j] = CC * (Z (Binomial[k — 1,4] * ((—=1)\(k — i — 1))  e(lambdalil(i-r{it)+(a[j1] alphali]))
(e ambalil(ri—)+(v"alobali) / (r(31] — ))))

sum31[j] = CC * (kz (Binomial[k — 1,4] * ((—1)"(k —i — 1)) x e~ —lambda[j]+(i—r{j1])*(z[i1] *alphalj]))
(Gamma|l — (astarl/alpha[j]),lambdalj] * (r[j1] — 2) * (z[j1]alpha[j])]/
((lambda[?]’\(—asta’iﬂ/ alpha[j])) * ((r[i1] — ¢)"(1 — (astar1/alpha[j])))))));

sum32[j] = CC * (Z (Binomial[k — 1,4] * ((—1)\(k — i — 1))  e(lambdalil(i-r{it)+(a[i1] alphali])) ,
(Gamma][l — (astar2/alphalj]), lambda[j] * (r[j1] — 2) * (z[j1]"alpha[j])]/

((lambda(j]" (—astar2/alpha[j])) = ((r[j1] — )" (1 — (astar2/alpha[j])))))));

sum33[j] = CC * (Z (Binomial[k — 1,] * ((—1)"(k — i — 1)) x e(Tlambdalilx(i—rljt])x(aljt] alphas}) ,
(Gammal][l — (astar3/alphalj]), lambda[j] * (r[j1] — 2) * (z[j1]"alpha[j])]/
((lambda(j]"(—astar3/alpha[j])) * ((r{j1] — £)"(1 — (astar3/alphal[j])))))));
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k=1
Survival[j] = CC * (Z (Binomial[k — 1,4] * ((—1)\(k — i — 1)) x e~ lambdalix(i—rliD«(=[il]"alphals])

( e—lambda[j]*(r[j1]—i)*(z"‘za=lgha[ﬂ) / (rj1] — z))))
I;

G Undersquareerrorlossfunction ........ *)

yBP1 = (isuml[j])/it;
PSurvivall = (i Survival[j]) / it;

b

Lowerl =

z/.

FindRoot[PSurvivall == (1 — (7/2)), {2, Linitial}|;
Upperl =

z/.

FindRoot[PSurvivall == (7/2), {2, Uinitial}];
(*eeenne Underabsoluteerrorlossfunction ......*)

sum = (it:lsum2[j])/it;

yBP2 = ’

y/-

FindRoot[sum == 0.5, {y, Minitial}];

Survivals = Table[Survival[j], {7, 1,it}];

sort = Sort[Survivals;

PSurvival2 = (sort[[it/2]] + sort[[(it/2) + 1]])/2;

Lower2 =

FindRoot[PSurvival2 == (1 — (7/2)), {2, Linitial}|;
Upper2 =

z/.

FindRoot[PSurvival2 == (7/2), { 2, Uinitial}];

(*.... UnderLINEXlossfunction............ *)

(oo (@*=0.1) oo *)

yBP31 = ((l/it) * (i sum31[j])) A(—1/astarl);

PSurvival3l = ((i (Survival[i]"(—astarl)))/it) A(—1/astarl);
Lower31 = ”

FindRoot[PSurvival3l == (1 — (7/2)), {2, Linitial}|;
Upper3l =
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FindRoot[PSurvival3l == (7/2), {2, Uinitial}];
(oo (@* =0.5) oo *)

yBP32 = ((l/it) * (isum32[]])) A(—1/astar2);
PSurvival32 = ((izt(Survival[i]"(—astaﬂ))) / it) A(—1/astar2);

=1
Lower32 =

FindRoot[PSurvival32 == (1 — (7/2)), {2, Linitial}|;
Upper32 =

FindRoot[PSurvival32 == (7/2), {2, Uinitial}];
(Koo (@* =1) e *)

yBP33 = ((l/it) . (_t sum33[j])) A(—1/astar3);

PSurvival33 = (( 3 (Survivale]A(—asta.r3))) / it) A(=1/astar3);
=1

Lower33 = ’

FindRoot[PSurvival33 == (1 — (7/2)), {2, Linitial}|;

Upper33 =

z/.

FindRoot[PSurvival33 == (7/2), {2, Uinitial}|;

Print[" Y", k, ":x",j1];

Print[" ";

Print["\ \multirow{1}{*}{}&&&", "Sq. err. &", NumberForm[Re[yBP1],4],

" &$(", NumberForm[Re[Lowerl], 4], *,", NumberForm[Re[Upperl], 4], ")$\\\\"];
Print["\ \multirow{1}{*}{}&&&", "Ab. err. &", NumberForm|Re[yBP2],4],

" &$(", NumberForm[Re[Lower2], 4], ",", NumberForm[Re[Upper2], 4], ")$\\\\"];

Print ["\ \multirow{1}{*}{}&&&", "LINEX (a*=0.1) &", NumberForm|Re[yBP31], 4],
" &$(", NumberForm[Re[Lower31], 4], ",", NumberForm[Re[Upper31], 4], ")$\\\\"];
Print ["\ \multirow{1}{*}{}&&&", "LINEX (a*=0.5) &", NumberForm|Re[yBP32], 4],
" &$(", NumberForm[Re[Lower32], 4], ",", NumberForm[Re[Upper32], 4], ")$\\\\"];
Print ["\ \multirow{1}{*}{}&&&", "LINEX (a*=1.0) &", NumberForm[Re[yBP33|, 4],

" &$(", NumberForm[Re[Lower33], 4], ",", NumberForm[Re[Upper33], 4], ")$\\\\ \cline{3-6}"];

Linitial = Lowerl + 0.05;
Uinitial = Upperl + 0.05;
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= yBP2 + 0.05;

Minitial

I;

11S009 SISRY L JO JojusD - ueplor Jo AisieAlun JO Ateiq!T - peAesSY SIYDIY |V

Label[end];

I;
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Appendix 4

(* Two samples prediction based on progressive type II data *)

a =2; A = 1; (* The assumed values of the parameters weibull *)

a = 1;b = 1; (*Assumedvaluesofhyperparametersofr1(\/data)..Priorl..*)

¢ = 2;d = 1; (*Assumedvaluesofhyperparametersofr2(a).......Priorl...*)

7 = 0.05; (* The coverage of the credible interval *)

it = 1000(* number of interations*);

astarl = 0.1; astar2 = (.5; astar3 = 1,

nl = 30(* size of observed sample drawn from weibull *);

m1 = 10(* size of progressive type 2 censored observed sample *);

itl = ml + 5;

r[1] = 5;r[2] = 5;r[3] = 5; r[4] = 5;r[5] = 0;r[6] = 0; r[7] = 0; r[8] = 0;r[9] = 0;[10] = 0;
r[11] = 0;r[12] = 0;r[13] = 0;r[14] = 0;r[15] = 0; (* censoring scheme for observed sample *)
(* = (generatingprogressivedatafromweibull) *)
Do [wli] = Random{[); v[i] = wi]® (1 /(i + Y pmi_ir1 7k1]) ) , {i, 1, m1}] ;

Do [ufi] = 1 — [T yssa o022l = (—1/A) * Logl1L — i) (1/a), {i, 1, m1}]

(*

Print["The observed progressive type 2 censored sample "];

Do[Print["x", %, ":",m1, ":",nl," = ", z[¢]], {7, 1, m1}];

n2 = 10; (* size of unobserved sample drawn from weibull *)

m2 = 6; (* size of progressive type 2 censored future sample *);

s[1] = 4; s[2] = 0; s[3] = 0; s[4] = 0; 5[5] = 0; s[6] = 0; (* censoring scheme for future sample *)
mode =

a2/.

FindRoot [—d + ((c + m1 — 1)/a2) + (X5, Logfz[i]]) — ((a +m1) /(b+ 32, (z[i]a2) * (1 + rli])
* (XM, ((x[i]"a2) * Log[z[i]] * (1 + r[i]))) == 0,{a2,2}];

fmode =

Log [e~#™9d¢ x (mode” (¢ + m1 — 1)) * ([T, (z[s]" (mode — 1)))
(1 /((b+ X, (z[i]*mode) * (1 + r[i])) *(a + m1)))] ;

For[j = 1,j < it, j++,

0=1;

Do[u2[j, ] = 2 * Random[], {7, 1, it1}];

Do[u3[j, i] = Random]], {i, 1,it1}];

Do[u4[j, i{] = Random]], {¢, 1,it1}];

Dole[j,1] = (—1/6) * Log[1 — u3|[j, 4], {3, 1, it1}];

Dolel[j,i] = (—1/6) * Log[1 — u4[j,1]], {,1,it1}];

Dol[If[u2[j, 1] < 1, {xx[4,i] = u2[j, 1], t[j, 1] = —el4, ]}, {xx[j,i] = 1 + el[3}, 1],
t[j? 7’] = _e[ja 7’] - el[ja Z]}], {i, 1ait1}];

Do[x2[j, 7] = mode + (xx[j, i]/fmode), {t, 1, it1}];
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Do [£x2[j, ] = Log [e~#*2i x (x2[4, ] (c + m1 — 1)) * (Hf‘zll((x[z])"(x2[7, i — 1))

* (1/((6+ X2 (=l x2[5,4]) * (1 + rfi])) Na + m1)) )], {i,1,it1}] ;
DolIf[t[j,i] < (Log[fx2[j, i]/fmode]), {rv[j, i] = x2[j, a]}, {rv[j, i] = 222222}], {i, 1,it1}];

Do[If[rv[j, k] # 222222, {alphalj] = rv|[j, k], Break[]}, alpha[j] = rv[j, k + 1]], {k, 1,it1}];

p=ml+a;0 =b+ 3% ((z[i] alphalj]) * (1 +r[d)));

dist = GammaDistribution|u, (1/0)];

lambda[j] = Random|dist];

I;

Minitial = z[1];

Linitial = z[1];

Uinitial = Linitial + 0.5;

Forlk =1,k < m2, k++,

1] =n2; ‘

Do ["y[z'] - (n2 _ (Z;;lls[i]) —it 1) i, 2,m2}] :
Ckminusl = (Hf=1 'y[z]) ;

Iffk==1, aik[1] = 1];

Iffk==2, aik[1] = (1/(~[2] — ~[1])); aik[2] = (1/(~7[1] —~[2]))];
1f [k > 2,aik(1] = (IT},(1/(vli] — 711D)) ;

Do [prod1 = (TT;Z;(1/(11] — 71)) ) sprod2 = (ITizisa (1/ (713 — 01D
aik[i] = prodl * prod2, {¢,2, k — 1}];

aik[k] = (T3t (1/ (20 — 71K ) |5

For[j = 1,7 <it, j++,

yBP1[j] = Ei.;l (Ckminusl * aik[¢] * (Gammal[l + (1/alpha[j])]/((lambda[5]*(1/alphalj]))

*(7[i]"(1 + (1/alpha[j]))))));

sum[j] = 35 | ((Ckminusl * aik[i]  e~'ambdalilsalil=(u"alphaliD)) /y[4]) ;

yBP31[j] = 3% | (Ckminus1 * aik[i] * (Gamma[l — (astarl/alphaj])]/((lambdal[3]
"(—astarl/alpha[j])) * (v[i]*(1 — (astarl/alphal[j]))))));

yBP32[j] = 3°F | (Ckminus] * aik[i] * (Gamma[l — (astar2/alpha[;])]/((lambdal[3]
" (—astar2/alphalj])) * (v[i]"(1 — (astar2/alphalj]))))));

yBP33[j] = Y&, (Ckminus1 * aik[i] * (Gamma[l — (astar3/alphalj])]/((lambdal[3]
"(—astar3/alphalj])) * (v[i](1 — (astar3/alphalj]))))));

Gky[j] = 35, ((Ckminusl * aik[s] * (1 — e~lambdalileali+@ alphaliD)) / y[;]) ;

}:BPlhat - (2};1 yBP1 [7']) / it;
Gkylhat — (2;;1 ka[i]) / it
Lowerl =

y/.

FindRoot[Gkylhat == (7/2), {y, Linitial}|;
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Upperl =

y/-

FindRoot[Gkylhat == (1 — (7/2)), {y, Uinitial}|;
suml = (Z;t:l sum[i]) / it;

yBP2hat —

y/-

FindRoot[suml == 0.5, {y, Minitial}];

CDFs = Table[Gky[j], {j, 1,it}];

sort = Sort[CDFs;

PCDF2 = (sort[[it/2]] + sort[[(it/2) + 1]])/2;
Lower2 =

y/-

FindRoot[PCDF2 == (7/2), {y, Linitial}|;
Upper2 =

y/-

FindRoot[PCDF2 == (1 — (7/2)), {y, Uinitial};
yBP31hat = ((z;.;l yBP31[7']) / it) A(—1/astarl);

Gky31hat = ((z;;l(ekyw(—astaﬂ))) / it) A(=1/astarl);
Lower31 =

y/.

FindRoot[Gky31hat == (7/2), {y, Linitial}];

Upper3l =

y/.-

FindRoot[Gky31hat == (1 — (7/2)), {y, Uinitial}];

yBP32hat = ((zi.t . yBP32[i]) / it) A(—1/astar2);

Gky32hat = ((Zijt:l(ka[j]"(—astaﬂ))) / it) A(=1/astar2);
Lower32 =

y/-

FindRoot[Gky32hat == (7/2), {y, Linitial}];

Upper32 =

y/-

FindRoot[Gky32hat == (1 — (/2)), {y, Uinitial}];

yBP33hat = ((zi.t . yBP33[j]) / it) A(—1/astar3);

=
Gky33hat = ((2;;1(kaw(—astar3))) / it) A(=1/astar3);
Lower33 =

y/-

FindRoot[Gky33hat == (7/2), {y, Linitial}];

Upper33 =
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y/-

FindRoot[Gky33hat == (1 — (7/2)), {y, Uinitial}|;
Print["\\multirow{1}{*}{}&&S$Y_{", k, ":", m2, ":", n2, "}$&", "Sq. err. &",
NumberForm[Re[yBP1hat], 5], " &$(", NumberForm[Re[Lowerl], 5],

n » NumberForm[Re[Upperl], 5], ")$\\\\"];

Print["\ \multirow{1}{*}{}&&&", "Ab. err. &",
NumberForm[Re[yBP2hat], 5], " &$(", NumberForm[Re[Lower2], 5], ",",
NumberForm[Re[Upper2], 5], ")$\\\\"];

Print ["\ \multirow{1}{*}{}&&&", "LINEX $(a*=0.1)$ &",
NumberForm[Re[yBP31hat], 5], " &$(", NumberForm|Re[Lower31], 5], ",",
NumberForm[Re[Upper31], 5], ")$\\\\"];

Print ["\ \multirow{1}{*}{}&&&", "LINEX $(a*=0.5)$ &",
NumberForm[Re[yBP32hat], 5], " &$(", NumberForm|Re[Lower32], 5], ",",
NumberForm[Re[Upper32], 5], ")$\\\\"];

Print ["\ \multirow{1}{*}{}&&&", "LINEX $(a*=1.0)$ &",
NumberForm[Re[yBP33hat], 5], " &$(", NumberForm|Re[Lower33], 5], ",",
NumberForm[Re[Upper33], 5], ")$\\\\ \cline{3-6}"];

Minitial = yBP2hat + 0.05;

Linitial = Lowerl + 0.05;

Uinitial = Upperl + 0.05;

I
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Appendix 5

(* ComputationsofMLEsandBayesestimatorsunderdifferentlossfunctions
whenbothaand \areunknownbasedonrecorddata, byusingprior0 *)

a = 2; X = 1; (* The assumed values of the weibull parameters*)

a = 0; b = 0; (*Assumedvaluesofhyperparametersofr1(\/data)...Prior0...*)
¢ = 0;d = 0; (*Assumedvaluesofhyperparametersofr2(a)........ Prior0....%)
it = 1000; (* number of MCMC samples*)

M = 100; (* number of iterations *)

n = 9(* size of record sample drawn from weibull *);

itl =n 4+ 10;

astarl = 0.1; astar2 = 1; astar3 = 5;

For[l = 1,1 < M, l++, (* loop of iterations *)

(¥*====== = (generatingrecorddatafromweibull) =¥)
Do[u[i] = Randoml[], {7, 1, 100}];
pl=1;

Dole[i] = (—1/81) x Log[1 — u]]], {2, 1, 100};
Do [«fk] = (((Xhi(eliD) / 2) “(1/a), {k,1,n}];
== == ===(endofgeneration) *)
(*....ComuputationtheiterationMLEforaandA....... %)
alphaMLE1[l] = n /((n x Log[z[n]]) — > ;_, Log[=[i]]) ;
lambdaMLEL[l] = n * (z[n]"(—alphaMLEL1[l]));
mode =
al/.
FindRoot [-d + ((c+n — 1)/al) + (31, Log|z[i]]) — ((a + n) * (z[n] al)
*Log[z[n]])/ (b + z[n]"al) == 0,{al, 2}];
fmode = Log [e~%™d x (mode”(c + n — 1)) * ([T:, ((z[i])* (mode — 1)))
*(1/(b + (z[n]"*mode))*(a + n))];

For[j = 1,7 <it, j++, (* loop of iterations *)
(*Generatingafromn2(a/data)byusingDevroye(1984)method*)
0=1;

Do[u2[j, ] = 2 * Random[], {7, 1, it1}];

Do[u3[j, i] = Random]], {i, 1,it1}];

Do[u4[j, i]] = Random]], {¢, 1,it1}];

Dole[j, 1] = (—1/6) * Log[1 — u3|[j, ], {3, 1,it1}];

Dolel[j,7] = (—1/6) * Log[1 — u4[j, ]], {2, 1,it1}];

Do[If[u2[j, 4] < 1, {xx[j, ] = u2[j, |, t[,i] = —el4,i]}, {xx[j, 3] = 1 + el[3, 1],
t[j? 7'] = _e[ja 7’] - el[ja Z]}], {i, 1ait1}];

Do[x2[j, 7] = mode + (xx[j, i]/fmode), {t, 1,it1}];
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Do [fx2[j, 1] = Log [~ x ((x2[, i])"(c + n — 1)) * (TT:_, (=) (2[5, 1] — 1))
*(1/(b+ (z[n])*(x2[1, 2]))"(a + n))], {2, 1,it1}];

Do|[If[t[4, 1] < (Log[fx2[j,]/fmode]), {rv[j,i] = x2[4,1]}, {rv[j, 1] = 222222}, {3, 1, it1}];
Do[If[rv[j, k] # 222222, {alphalj] = rv|[j, k], Break[]}, alpha[j] = rv[j, k + 1]], {k, 1,it1}];

p = a+n;o = b+ (z[n]"alphalj]);
dist = GammaDistribution|u, (1/0)];
lambdalj] = Random|dist];

(K ettt ettt *)
|; (* End of j loop *)
(*...ComputationsofiterationBayesestimators................. *)

alphaBE11[l] = (Z;tzl alpha[j]) / it;
MSES31[l] = (Zill (alpha[j] — a.lphaBEll[l])"2) / it;

3

lambdaBE11[l] = (2};1 lambda[i]) / it;
MSEAL[l] = (zj;t .(lambdal[j] — lambdaBEll[l])"2) / it;

dataa = Table[alphalj], {7, 1,it}];

ordera = Sort[datac];

datal = Table[lambdalj], {7, 1,it}];

order\ = Sort[datal];

alphaBE21[l] = (orderc[[it/2]] + ordera[[(it/2) + 1]])/2;
MSE51[l] = (i, (alphalj] — alphaBE21[1))"2) / it;

lambdaBE21[l] = (order\[[it/2]] + orderA[[(it/2) + 1]])/2;

MSE61[l] = (2};1 (lambdal[j] — lambda,BE21[l])’\2) / it;

alphaBE311[l] = ((1 fit) * (1 /(alpha[i])"asta.rl)) A(—1/astarl);
MSET1[l] = (Z}t:l(alpha[i] - alphaBE311[l])"2) / it;

lambdaBE311[l] = ((l/it) o 1(1/(1ambda[j])"asta.r1)) A(—1/astarl);
MSES1[l] = (z;;l (lambdal[j] — lambdaBE311[l])"2) / it;
alphaBE321[l] = ((1 /it) * (1 /(alpha[j])"asta.r2)) A(—1/astar2);
MSE91[l] = (z;.';l(alpha[i] - alphaBE321[l])’\2) / it;

lambdaBE321[l] = ((1 fit) * (1 /(lambda[i])"astar2)) A(—1/astar2);
MSE101[l] = (Ei;: .(lambdalj] — 1ambdaBE321[l])"2) / it;
alphaBE331[l] = ((1 /it) * E;t=1(1 / (alpha[j])"asta.r3)) A(—1/astar3);
MSE111[l] = (E;t:l(alpha[i] - alphaBE331[l])"2) / it;

lambdaBE331[l] = ((1 fit) * (1 /(lambda[i])’\astar?»)) A(—1/astar3);

MSE121[l] = (z;;l (lambdalj] — la.mbdaBE331[l])"2) / it;
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|; (*...Endoflloop....*)
(*...computationsofMLEsandBayesestimatorsandtheirMSEs....*)

MSE1 = (Zgl(alphaMLEl[l] - alphaMLE)"2) / M;
lambdaMLE = (zj‘i . lambdaMLEl[l]) /M

MSE2 = (Ef‘il(lambdaMLEl[l] - lambdaMLE)"2) / M;
(*....Bayesestimatorundersquareerrorlossfunction........... *)
alphaBE1 = (z{‘il alphaBEll[l]) / M;

MSE3 = (z;{‘il MSE31[l]) / M;
lambdaBE1 = (z{‘i . lambdaBEll[l]) / M;

MSE4 = (z,"i . MSE41[l]) / M;
(*.....Bayesestimatorunderabsoluteerrorlossfunction.......... *)
alphaBE2 = (z{‘il alphaBE21[l]) / M;

MSES5 = (2{‘; MSE51[l]) / M;
lambdaBE2 = (z{‘i . lambdaBE21[l]) / M;

MSE6 = (2,"11 MSE61[l]) / M;
(*......BayesestimatorunderLINRXlossfunction.......... *)
(R (@* =0.1) e *)
alphaBE31 = (z;{‘il alphaBE311[l]) / M;

MSE7 = (2{‘; MSE71[l]) / M;
lambdaBE31 = (1, lambdaBE311[]) / M;

MSES = (zgl MSE81[l]) / M;
[ ) DR *)
alphaBE32 = (z;{‘il alphaBE321[l]) / M;

MSE9 = (2{‘; MSE91[l]) / M;
lambdaBE32 = (zjfﬁl 1ambdaBE321[l]) / M;

MSE10 = (2;‘1 . MSElOl[l]) / M;
Foreeeeeeeeeenn ) YO *)
alphaBE33 = (z;{‘il alphaBE331[l]) / M;

MSE11 = (zf‘il MSElll[l]) / M;
lambdaBE33 = (Ei‘il 1ambdaBE331[l]) / M;
MSE12 = (Efil MSE121[l]) / M;
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Print["Prior 0 "];
Print["Case n = ", n|;
Print ["Parameter | MLE | S.E.L | A.E.L | a*=", astarl, "| a*=", astar2, "| a*=", astar3, "|"];

Print[" o & ", NumberForm[Re[alphaMLE], 5], " & ", NumberForm[Re[alphaBE1],5]," & ",
NumberForm[Re[alphaBE2], 5], " & ", NumberForm[Re[alphaBE31],5]," & ",
NumberForm[Re[alphaBE32], 5], " & ", NumberForm[Re[alphaBE33], 5]|;

Print[" MSE(a) & $(", NumberForm[Re[MSE1], 4], ")$&$(", NumberForm[Re[MSE3], 4],
")$&$(", NumberForm[Re[MSES5], 4], ")$&$(", NumberForm[Re[MSET7], 4], ")$&$(",
NumberForm[Re[MSE9], 4], ")$&$(", NumberForm[Re[MSE11], 4], ")$"];

Print[" A & ", NumberForm|[Re[lambdaMLE], 5], " & ", NumberForm[Re[lambdaBE1],5]," & ",
NumberForm[Re[lambdaBE2], 5], " & ", NumberForm[Re[lambdaBE31],5]," & ",
NumberForm[Re[lambdaBE32], 5], " & ", NumberForm[Re[lambdaBE33], 5]|;

Print[" MSE()) & $(", NumberForm[Re[MSE2], 4], ")$&$(", NumberForm|Re[MSE4], 4],
")$&$(", NumberForm[Re[MSEG], 4], ")$&$(", NumberForm[Re[MSES], 4], *)$&$(",
NumberForm[Re[MSE10], 4], ")$&$(", NumberForm[Re[MSE12], 4], ")$"];
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Appendix 6

(* One sample prediction based on record data*)

a = 2; X = 1; (* The assumed values of the weibull parameters*)

a = 1;b = 1; (*Assumedvaluesofhyperparametersofr1(\/data)..Priorl....*)
¢ = 1;d = 1; (*Assumedvaluesofhyperparametersofr2(a)........ Priorl....*)

it = 1000(* number of interations*);

m = 9(* size of record sample drawn from weibull *);

itl =m + 10;

7 = 0.05; (* Coverage of the predictive interval for the nth future record *)
astar31l = 0.1; astar32 = 0.5; astar33 = 1;

(*..genetatingrecorddatafromWeibull...............cccceceeiennne *)
Do[u[i] = Random][], {i,1,100}];
pl1=1;

Dole[i] = (—1/81) * Log[1 — u[é]], {2, 1, 100}];

Do [afk] = ((Shieli)) /A) A(1/a), {k, 1,m}|;

Print["The observed record sample is "];

Do|[Print["x(u(",,")) = ", z[i]], {i, 1, m};

mode =

al/.

FindRoot [-d + ((c+m — 1)/al) + (}_i, Log[z[i]]) — ((a + m) * (z[m]"al)
*Log[z[m]])/ (b + z[m]"al) == 0,{al, 2}];

fmode = Log [e~%™% x (mode(c + m — 1)) * (ITi~,((z[i])" (mode — 1)))
*(1/(b+ (z[m]"mode))"(a + m))];

For[j = 1,j < it, j++, (* loop of iterations *)

0=1,

Do[u2[j,i] = 2 *x Random[], {7, 1,it1}];

Do[u3[j, ] = Random]], {i, 1,it1}];

Dolu4[j, ] = Random]], {¢, 1, it1}];

Dole[j,i] = (—1/6) * Log[1 — u3|[j, 1], {3, 1,it1}];

Dolel[j,i] = (—1/0) * Log[1 — u4[j, ], {3, 1,it1}];

Do[If[u2[j, 3] < 1, {xx[j, %] = u2[j, 1|, t[,i] = —el4, ]}, {xx[4, 3] = 1 + el[3, 1],

t[j’ 7‘] = _e[ja 7’] - el[j’ 7’]}]’ {i’ laitl}];

Do[x2[j, {] = mode + (xx[j, 7] /fmode), {3, 1,it1}];

Do [fm[j, i] = Log [e~ 6 x ((x2[j,4])"(c +m — 1)) * ([T, ((=[i)" (x2[3, 4] — 1))
*(1/(b+ (z[m])*(x2[j, 2]))"(a + m))], {z, 1,it1}];

Dolkr|[j, 7] = (Log[fm[}, i]/fmode]), {3, 1,it1}];

Do|[If[t[4, 7] < (Logl[fm[j,]/fmode]), {rv[j, ] = x2[4, ]}, {rv[j, i] = 222222}], {3, 1, it1}];
Do[If[rv[j, k] # 222222, {alphalj] = rv|[j, k], Break[]}, alpha[j] = rv[j, k + 1]], {k, 1, it1}];
p = a+ m;o = b+ (z[m]" alphalj]);
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dist = GammaDistribution|u, (1/0)];

lambdalj] = Random|dist];

]; (* End of loop of iterations *)

Forln =m+1,n < m+ 5,n++,

For[j =1,j <it, j++,

suml[j] = ((lambda[j]"(n — m — 1 — (1/alpha][j])))*
ela.mbda[i]*(m[m]"alph&[i])/ ((n —m — ]_)')) * (Z::J"_I(Bmomlal[n -_m— 1, Z]
*((=D)*n—m —i—1)) x (z[m]*((n — m — i — 1) x alpha[j]))
*(Gammal(1/alphalj]) + i 4+ 1,lambdal[j]

*(z[m] alpha(j])]/ (lambda[j]"))));

Survival[j] = Z::J"_l ((e—lam‘bd&[i]*(y"alpha[i]—ﬂ?[m]"alpha[i])

*((lambdal[j] * (y"alpha[j] — z[m]"alphal[j]))"i))/(i!));

sum2[j] = (elambdalilx(@lml"alpbali]) / ((n — m — 1)1)) * (377" (Binomialln — m — 1, ]
((—lambda[j])*(n — m — i — 1)) * (z[m]*((n — m — i — 1)

xalpha[j])) * Gammal[i + 1,lambdalj] * (w”alpha[j])]));

sum31[j] = (((lambda[j]*(n — m — 1 + (astar31/alphalj])))

* elambda[i]*(a:[m]"alpha[ﬂ)/ ((n -_m— 1)!)) * z:;—(;'n—l (Blnomlal[n —m—1, 2]
*((—D)*n—m —i—1)) x (z[m]*((n — m — i — 1) x alpha[j]))
*(Gammal(—astar31/alpha[j]) + i + 1, lambdal[]

*(z[m] alpha(j])]/ (lambda[j]"))));

sum32[j] = (((lambda[j]*(n — m — 1 + (astar32/alphalj])))

x glambdaljl+(afm]"alphali]) / (( — m — 1)1)) *

E:::%_I(Binomial[n —m— 1 *x ((-D)"(n—m —i—1)) * (z[m]

A((n —m — i — 1) * alphalj])) * (Gamma|(—astar32/alpha[j]) + i + 1,
lambdal[j] * (z[m]*alphalj])]/(lambda[j]"7))));

sum33[j] = (((lambda[j]*(n — m — 1 + (astar33/alpha[j])))

* elambdalil«(zlm]"alphali]) / ((n — m — 1)1)) * 37"~ (Binomial[n — m — 1, 4]
*((—D*n—m —i—1)) x (z[m]*((n — m — i — 1) x alpha[j]))
*(Gammal(—astar33/alphalj]) + i + 1,

lambdalj] * (z[m]"alphalj])]/ (lambda[j]"))));

I;

Linitial = z[m] + 0.3;

Uinitial — Linitial + 0.5;

(*......Undersquareerrorlossfunction................ *)

yBP1 = (zi_t:suml[j])/it;

it
PSurvivall = (ZSurvival[j]) / it;
j=1
Lowerl =
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y/-
FindRoot[PSurvivall == (1 — (7/2)), {y, Linitial}|;
Upperl =
y/-
FindRoot[PSurvivall == (7/2), {y, Uinitial}];
(*... Underabsoluteerrorlossfunction.............. *)
it
sum = (Zsum2[j])/it;
j=1
yBP2 =
w/.

FindRoot[sum == 0.5, {w, Linitial}];
Survivals = Table[Survival[j], {7, 1,it}];
sort = Sort[Survivals;

PSurvival2 = (sort[[it/2]] + sort[[(it/2) + 1]])/2;
Lower2 =

y/-

FindRoot[PSurvival2 == (1 — (7/2)), {y, Linitial};
Upper2 =

y/-

FindRoot[PSurvival2 == (7/2), {y, Uinitial}|;

(*.... UnderLINEXlossfunction .............cc....... *)

yBP31 = ((isum?)l[j])/it) A(—1/astar31);

PSurvival3l = ((iSurvival[j]"(—astar?»l))/it) A(—1/astar31);

=1
Lower3l =

y/-
FindRoot[PSurvival3l == (1 — (7/2)), {y, Linitial}|;
Upper3l =

y/-
FindRoot[PSurvival3l == (7/2), {y, Uinitial}];

yBP32 = ((i sum32[j]) / it) A(—1/astar32);

PSurvival32 = ((i Survival[i]"(—astar32)) / it) A (—1/astar32);

Lower32 =
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y/-
FindRoot[PSurvival32 == (1 — (7/2)), {y, Linitial}|;

Upper32 =

y/-
FindRoot[PSurvival32 == (7/2), {y, Uinitial}];

it
yBP33 = ( ( sum33[7] / it | A(—1/astar33);
=1

it
PSurvival33 = ( ( SurvivalLi]"(—astar33)) / it) A (—1/astar33);
j=1
Lower33 =
y/-
FindRoot[PSurvival33 == (1 — (7/2)), {y, Linitial}|;
Upper33 =

y/-
FindRoot[PSurvival33 == (7/2), {y, Uinitial}];

Print["\ \multirow{1}{*}{}&$ X_{(U(",n,"))}"," $&","Sq. err. &",
NumberForm[Re[yBP1], 5], " &$(", NumberForm[Re[Lowerl], 5], ",",
NumberForm[Re[Upperl], 5], ")$\\\\"];

Print["\ \multirow{1}{*}{}&&", "Ab. err. &",
NumberForm[Re[yBP2], 5], " &$(", NumberForm[Re[Lower2], 5], ",",
NumberForm[Re[Upper2], 5], ")$\\\\"];

Print ["\ \multirow{1}{*}{}&&", "LINEX $(a*=0.1)$ &",
NumberForm[Re[yBP31], 5], " &$(", NumberForm|Re[Lower31], 5], ",",
NumberForm[Re[Upper31], 5], ")$\\\\"];

Print ["\ \multirow{1}{*}{}&&", "LINEX $(a*=0.5)$ &",
NumberForm[Re[yBP32], 5], " &$(", NumberForm|Re[Lower32], 5], ",",
NumberForm[Re[Upper32], 5], ")$\\\\"];

Print ["\ \multirow{1}{*}{}&&", "LINEX $(a*=1.0)$ &",
NumberForm[Re[yBP33], 5], " &$(", NumberForm|Re[Lower33], 5], ",",
NumberForm[Re[Upper33], 5], ")$\\\\ \cline{2-6}"];

I;
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Appendix 7

(*ComputatiosoftwosamplesBayespredictorsunderdifferentlossfunctions,
andpredictionintervals, basedonrecorddata, byusingprior1*)

a = 2; X = 1; (* The assumed values of the weibull parameters*)

a = 1;b = 1; (*Assumedvaluesofhyperparametersofr1(\/data)..Priorl..*)

¢ = 2;d = 1; (*Assumedvaluesofhyperparametersofr2(a).......Priorl...*)

it = 1000(* number of interations*);

m = 9; (*no.ofrecords*)

n = 6; (* size of future record sample *)

itl =m+ 5;

T = 0.05; (* Coverage of the predictive interval for the nth future record *)
astarl = 0.1; astar2 = (.5; astar3 = 1;

Dolu[i] = Random[], {3, 1, 100}];

pl=1;

Dole[i] = (—1//1) * Log[1 — u][i]], {, 1, 100}];

Do [afk] = ((Ska(el) /2) A(1/a), {k,1,m}]

Print["The observed recored sample is of size m = ", m];

Print["The observed record sample is "|;

Do[Print["x(u(",%,")) = ", z[3]], {, 1, m}];

mode =

al/.

FindRoot [-d + ((c+m — 1)/al) + (3_i~, Log[z[i]]) — ((a + m) * (z[m]"al)
*Log[z[m]])/(b + z[m]"al) == 0, {al, 2}];

fmode = Log [e~#™d x (mode”(c + m — 1)) * ([T~ ((z[i])*(mode — 1)))
*(1/(b + (z[m]"mode))”(a + m))];

For[j = 1,7 <it, j++, (* loop of iterations *)
(*.Generatingafromm2(a/data)byusingDevroye(1984)method........ *)

0=1,

Do[u2[j, i = 2 * Random]], {7, 1, it1}];

Do[u3[j, i] = Random]], {i, 1,it1}];

Do[u4[j, 7] = Random]], {i, 1,it1}];

Dole[j, 1] = (—1/6) * Log[1 — u3|[j,]], {3, 1,it1}];

Dolel[j,i] = (—1/0) * Log[1 — u4[j, ], {3, 1,it1}];

Do[If[u2[j, 3] < 1, {xx[j, %] = u2[j, |, t[4,i] = —el4,i]}, {xx[4, 3] = 1 + el[j, 1],
t[j? 7'] = _e[ja 7'] - el[j’ 7’]}]’ {i’ 1ait1}];

Do[x2[j, 7] = mode + (xx[j, i]/fmode), {¢, 1,it1}];

Do [£x2[j, 1] = Log [e~**?0 x ((x2[j, i])"(c + m — 1)) * (TTZ, ((le])* (2[5, 3] — 1)))
*(1/(b+ (z[m])*(x2[j, )" (a + m))], {z, 1,it1}];

Dol[Ifft[j, 3] < (Log[tx2[j,]/fmode]), {rv[j,i] = x2[j, 1]}, {rv[j, {] = 222222}], {3, 1,it1}];
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Do[If[rv[j, k] # 222222, {alphalj] = rv|[j, k], Break[]}, alpha[j] = rv[j, k + 1]], {k, 1,it1}];

(*...Generating\fromm1(A/data)..........ccceueuenee. *)
p=m+ a;o = b+ (z[m]" alphalj]);

dist = GammaDistribution|u, (1/0)];

lambdalj] = Random|dist];
(*..Endofgeneration...........cccccceeveruenuenuennenne. *)

|; (* End of j loop *)

Linitial = z[1];

Uinitial = Linitial + 1;

Minitial = z[1];

Forlk =1,k < n, k++,

For[j = 1,j < it, j++,

(*Computationofdensity, distributionfunctionandsurvivalfunction*)

suml[j] = (Gammalk + (1/alphal;])]/((lambda[5]"(1/alpha[j])) * Gammalk]));

sum2[j] = (Gammalk, lambda[j] * (y*alphal[j])]/Gammalk]);
sum31[j] = (((lambda[j]"(astarl/alpha[j]))
* Gamma[k — (astarl/alpha[j])])/Gammalk]);
sum32[j] = (((lambda[j]"(astar2/alpha[j]))
* Gammalk — (astar2/alpha[j])])/Gammalk]);
sum33[j] = (((lambda[j]"(astar3/alpha[j]))
* Gamma|k — (astar3/alpha[j])])/Gammalk]);
sum6[j] = 1 — (Gammalk, (lambdalj] * (y"alpha[;]))]/Gammal[k]);
](* ..... squareerrorlossfunction.................... *)
yBP1 = (Z}Ll suml[j]) / it;
PDF1 = (2;;1 sum6[7']) / it;

Lowerl =

y/-

FindRoot[PDF1 == (7/2), {y, Linitial }];
Upperl =

y/-

FindRoot[PDF1 == (1 — (7/2)), {y, Uinitial}|;
(*....absoluteerrorlossfunction................ *)
sum = (E;t:l sum2[j]) / it;

yBP2 =

y/-

FindRoot[sum == 0.5, {y, Minitial}];
DF's = Table[sum6[j], {3, 1,it}];
sort = Sort[DFs|;
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PDF2 = (sort|[it/2]] + sort[[(it/2) + 1]])/2;
Lower2 =

y/
FindRoot[PDF2 == (7/2), {y, Linitial }];
Upper2 =

y/.
FindRoot[PDF2 == (1 — (/2)), {y, Uinitial}];

( )
yBP31 = ((2;;1 sum31[j]) / it) A(=1/astarl);
PDF31 = ((z;t:l(sumﬁy]A(—astarl))) / it) A(—1/astarl);

Lower31l =

y/-

FindRoot[PDF31 == (7/2), {y, Linitial}];
Upper3l =

y/-

FindRoot[PDF31 == (1 — (7/2)), {, Uinitial}];

(*eeenne @* = 0.5 *)
yBP32 = ((z;?:l sum32[j]) / it) A(—1/astar2);

PDF32 = ((Ei;:l (sum6[j]"(—asta.r2))) / it) A(—1/astar2);
Lower32 =

y/-

FindRoot[PDF32 == (7/2), {y, Linitial}];
Upper32 =

y/-

FindRoot[PDF32 == (1 — (7/2)), {, Uinitial}];
(Koo = Lo *)

yBP33 = ( (z;;l sum33[j]) / it) A(—1/astar3);
PDF33 = ((z;‘;.;l (sum6[j]"(—astar3))) / it) A(—1/astar3);
Lower33 =

y/-
FindRoot[PDF33 == (7/2), {y, Linitial}];
Upper33 =

y/-
FindRoot[PDF33 == (1 — (7/2)), {y, Uinitial}];

Print["\ \multirow{1}{*}{}&&$ Y_{(U(",k,"))}", " $&", "Sq. err. &",
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NumberForm[Re[yBP1], 5], " &$(", NumberForm[Re[Lowerl], 5], ",",
NumberForm[Re[Upperl], 5], ")$\\\\"];
Print["\\multirow{1}{*}{}&&&", "Ab. err. &",
NumberForm[Re[yBP2], 5], " &$(", NumberForm[Re[Lower2], 5], ",",
NumberForm[Re[Upper2], 5], ")$\\\\"];

Print ["\ \multirow{1}{*}{}&&¥&", "LINEX $(a*=0.1)$ &",
NumberForm[Re[yBP31], 5], " &$(", NumberForm[Re[Lower31], 5], ",",
NumberForm[Re[Upper31], 5], ")$\\\\"];

Print ["\ \multirow{1}{*}{}&&&", "LINEX $(a*=0.5)$ &",
NumberForm[Re[yBP32], 5], " &$(", NumberForm|Re[Lower32], 5], ",",
NumberForm[Re[Upper32], 5], ")$\\\\"];

Print ["\ \multirow{1}{*}{}&&&", "LINEX $(a*=1.0)$ &",
NumberForm[Re[yBP33], 5], " &$(", NumberForm|Re[Lower33], 5], ",",
NumberForm[Re[Upper33], 5], ")$\\\\ \cline{3-6}"];

Linitial = Lowerl + 0.5;

Uinitial = Upperl + 0.5;

Minitial = yBP2 + 0.5;

I
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